Understanding
System.lO for
NET Core 3

Implementing Internal and
Commercial Tools

Roger Villela

ApPress’

http://www.allitebooks.org

Understanding
System.lO for
.NET Core 3

Implementing Internal
and Commercial Tools

Roger Villela

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Understanding System.10 for .NET Core 3: Implementing Internal and
Commercial Tools

Roger Villela
Sao Paulo, Sao Paulo, Brazil

ISBN-13 (pbk): 978-1-4842-5871-2 ISBN-13 (electronic): 978-1-4842-5872-9
https://doi.org/10.1007/978-1-4842-5872-9

Copyright © 2020 by Roger Villela

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Matthew Moodie

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5871-2. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-5872-9
http://www.allitebooks.org

This book is dedicated to my mother,

Marina Roel de Oliveira (1)
January 14, 1952 to March 17, 2017 (1)

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUthOrccccviieemmmmisssenmmnsssnmsssn s aan s snans vii
About the Technical REVIEWETcccussemsssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss ix
Acknowledgments......cccueemmsssssnnssnnnmmmssssssssssssnnssssssssssssnnsnnsssssssssssnnnnnns Xi
Introductioncccimmisnmmnmmmsssnnnmmssssnnnnmssssnnnnsssssnnnnnssssnnnnssssnnnnnnnssnnnnnss Xiii
Chapter 1: About .NET COreccussseemmmssssnnnssssssnsnssssssssnssssssnsnssssssnnnsnsss 1
T (0] 0117 S SPS PRSI 1
NET COre Platform.........ccccorrinscscsrssssse s s ssssnsss 2
Target Framework MONIKETccocevvrirnenercercee s se e s 5
Creating the RVJ.I0 Library for .NET Core Using Microsoft Visual Studio 2019......8
SUMMANY....eieeerere e r e e s e e e e 22
DOS e ——————————————— 23
DOMES .o ——————————— 24
Chapter 2: Overview of Architecture for Implementation................... 25
RVJ.I0 Custom Library and the Architecture for Implementation............cccveenene 25
Encapsulating Data TYPeS.......ccovermrenernsmnnsesesese s snssssessnnes 33
1T 4= O 52
DOS ... ————————————————— 52
DONES e —————————— 54
Chapter 3: Custom Data Types for a Custom Library........ccussnemnnnnnnnas 57
Purpose of Custom Data TYPESccceverrererrerernrenserseresessessessessesesessessessssessensens 57
Working with Custom Data Types for Stream Data TYpesccccvvevvererenverseraens 66
v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Using C++/CLI Projection and .NET COr€.......c.ccccvrerrererenrerseressssessessessessssessensens 73
3111111 T o O 77
DOS ..o 77
D0 I N 78
Chapter 4: Custom Collections for a Custom Library........cc.cccuussenrnanns 79
L] - 79
Fundamental Set of .NET Data Types for Collections in BCL...........ccceeerviriernene 80
Non-Generic—Based Custom ColleCtions.........c.cccvvserenrenernnernsesessesessenesennes 80
Generic-Based Custom ColleCtionscoovevrenerenernsesesnesese s 86
Iteration Over COllECTIONSccccevereerereer s 94
Iteration Over a Collection, the Enumerator Patternccccccvvirinicnencsennne, 107
The Engineering About for...each and Collections.............cccovrnniiinisennns 113
SUMMAIY.c.eeitiiriere e s s a e st s e s s b b e e s e e R sae e e e naenne s 122
DOS ..ot ———————————————— 122
DONM L. e 122
Chapter 5: Custom Collections - About C++ Templates
AN .NET GENEIICS..cuusurrssnsssansssansssnsssansssnsssansssansssnnssansssansssnsssansssanssns 123
Working with C++ Templates — Welcome, EVEryone...........c.ccoveeeerercrenscrerenens 124
Templates and Encapsulating KNowledgec.corenernnmrensenesesesesesessesessnnens 124
Fundamental Data TYPES.......ccvvvrerrererersnserese s 128
The Idea of a Template in Software Development Activitiesc.ccoeevivvrcerene. 133
Chapter 6: Unmanaged .NET Data Types and System.l0...........ccssuees 153
Unmanaged .NET Data Types and System.l0ccccvvvvrvrierierenserserenessensensenns 153
System.l0.UnmanagedMemoryStream .NET Data Type As an Example............. 162
1T - 17

About the Author

Roger Villela is a software engineer and
entrepreneur with almost 30 years of
experience in the industry. He works as an
independent professional. Currently, he is
focused on his work as a book author and
technical educator. He specializes in the inner
works of orthogonal features of the following
Microsoft development platforms:

¢ Microsoft Windows base services
¢ Microsoft Universal Windows Platform (UWP)
e Microsoft WinRT

e Microsoft .NET Framework implementation of the
runtime environment (CLR)

His work is based on Microsoft Visual Studio (Microsoft Windows)
using the following programming languages, extensions, and projections:

o C/C++
e Assembly (Intel IA-32/Intel 64 (x64/amd64))

e Component extensions for runtimes (C++/CLI and
C++/CX)

vii

About the Technical Reviewer

Carsten Thomsen is primarily a back-

end developer, but he works with smaller
front-end bits as well. He has authored and
reviewed a number of books and created
numerous Microsoft Learning courses, all to
do with software development. He works as

a freelancer/contractor in various countries
in Europe using Azure, Visual Studio, Azure
DevOps, and GitHub. among other tools. He’s

an exceptional troubleshooter and is adept

at asking the right questions, including the
less logical ones, in a most-logical-to-least-logical fashion. He also enjoys
architecture, research, analysis, development, testing, and bug fixing.
Carsten is a very good communicator with great mentoring and team-lead
skills; he also has great skills in researching and presenting new material.

ix

Acknowledgments

First, would like to thank the people on the Apress team who worked
with me on this book: Smriti Srivastava (Acquisitions Editor), Shrikant
Vishwakarma (Coordinating Editor), Matthew Moodie (Development
Editor), Welmoed Spahr (Managing Director), and Carsten Thomsen
(Technical Reviewer). It was a pleasure and an honor work with such a
highly professional team.

Thanks to my parents and a special thanks to my dad, Gilberto, and
my two brothers, Eder and Marlos, and my sister-in-law Janaina, and my
nephew Gabriel, and my nieces Livia and Rafaela.

Special thanks to my cousin Ariadne Villela.

I would also like to thank my professional colleagues and friends who
worked with me through these years.

Introduction

Working with software engineering is a challenge and a pleasure.

This book shows the reader how to take full advantage of the .NET APIs
in System.IO in order to achieve fundamental I/O operations and produce
better quality software.

The book starts with the basics of creating a .NET Core custom
library for System.IO. You will learn the purpose and benefits of a
custom cross-platform .NET Core library along with the implementation
architecture of the custom library components. Moving forward, you
will learn how to use the .NET APIs of System.IO for getting information
about resources. Here, you will go through drives, directories, files, and
much more in the .NET API. Manipulation of resources and environment
is discussed, and you will learn how to build custom I/0 actions
for resource manipulation followed by its properties and security.

Next, you will learn special .NET APIs operations with System.IO via
demonstrations of working with a collection of resources, directories,
files, and system information. Towards the end, you will go through the
managed and unmanaged streams in the .NET API such as the memory
stream, file stream, and much more.

After reading the book, you will be able to work with different features
of System.IO in .NET Core and implement its internal and commercial
tools to be used for different scenarios of I/0 tasks.

xiii

INTRODUCTION

The Common Language Runtime (CLR), foundational libraries,
and specialized libraries are organized in various components and
technologies that use resources and features of System.IO .NET data
types, and the coordination presents many challenges to the managed
execution environment. The C# programming language is used to show
important aspects of the behaviors of the resources and features of System.
10 libraries, and it should be considered as part of your day-by-day too, as
engineering practices.

Xiv

CHAPTER 1

About .NET Core

In this chapter, you will get an overview of .NET Core and projects for the

platform.

Acronyms

These acronyms will be introduced in this chapter:
e Application programming interface (API)
e Base Class Library (BCL)

e Common Type System (CTS)

o Common Intermediate Language (CIL)

e Common Language Infrastructure (CLI)
e Common Language Runtime (CLR)

o Common Language Specification (CLS)
e Framework Class Library (FCL)

e General availability (GA)

o Intermediate language (IL)

¢ Just-in-time (JIT)

e Target Framework Moniker (TFM)

© Roger Villela 2020
R. Villela, Understanding System.IO for .NET Core 3,
https://doi.org/10.1007/978-1-4842-5872-9_1

CHAPTER 1 ABOUT .NET CORE

e Long-term support (LTS)
e Microsoft Intermediate Language (MSIL)

e Virtual Execution System (VES)

.NET Core Platform

.NET Core is an open source project that implements the ECMA-335
international standard specification and can also implement non-standard
extensions provided by companies, institutions, and individuals. The .NET
Full Framework implementation is also based on the ECMA-335 international
standard specification.

The .NET Core open source project is maintained by Microsoft and
by the .NET community, and the implementation is a self-contained
.NET runtime and framework that is a cross-platform, general-purpose
development platform providing support for, at least, Microsoft Windows,
Apple macOS, and Linux distributions and/or derivations.

With the .NET Core platform, it is possible to write applications, libraries,
and components for desktop development, web development, cloud
development, device development, and IoT applications, for example.

The repositories of the open source projects are available on GitHub
and organized by functionalities and contexts of the .NET Core platform.

The following is a short description captured from the repository with
alist of the official main repositories of the .NET Core project itself and of
the fundamental components of the runtime, such as the virtual execution
environment and garbage collector mechanisms:

o GitHub repository for .NET Core (https://github.com/
dotnet/core): NET Core is a self-contained .NET runtime
and framework that implements ECMA 335. It can be (and
has been) ported to multiple architectures and platforms.
It supports a variety of installation options, having no

https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md

CHAPTER 1 ABOUT .NET CORE

specific deployment requirements itself. This repo
includes several documents that explain both high-level
and low-level concepts about the .NET runtime. They are
particularly useful for contributors to get context that can
be difficult to acquire from just reading code.

e GitHub repository for the .NET Core Runtime, the Core
CLR (https://github.com/dotnet/coreclr): Thisis
the runtime for .NET Core. It is composed of a garbage
collector, JIT compiler, primitive data types, and
low-level classes. The .NET Core Runtime implements
the ECMA-335 specification, is a self-contained .NET
runtime and framework, has been ported to multiple
architectures and platforms, and, having no specific
deployment requirements itself, supports a variety of
installation options.

Here is the GitHub repository for the .NET Foundational Class
Libraries, the BCL and FCL:

o GitHub repository for .NET Core Foundational Class
Libraries, the BCL and FCL (https://github.com/
dotnet/corefx): The .NET platform has a standard set
of class libraries. The BCL (core set) is expected with any
.NET implementation, because without it, we do not have
a functional implementation of .NET. The FCL (complete
set) is not fully required, but these two libraries provide
.NET types for many general and app-specific types.
Commercial and community libraries can be developed
on top of the BCL and FCL libraries. The CoreFX
repository contains both the BCL and the FCL.

https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx

CHAPTER 1 ABOUT .NET CORE

For web development, cloud development, back-end services, and
integration with IoT and mobile applications, there is also the official
repository for the ASP.NET Core platform:

e GitHub repository for ASP.NET Core
(https://github.com/aspnet/AspNetCore):
ASP.NET Core is also an open-source, cross-platform
framework for building web applications, cloud-based
applications, IoT applications, and back-end services
for mobile applications. It can be hosted on Windows,
Mac, or Linux, and can be deployed in the cloud or
on-premises.

The .NET Core platform can also be used to develop a redesigned
implementation of technologies that are made for a specific platform such
Microsoft .NET Windows Forms and Microsoft .NET WPF for the Microsoft
Windows family of operating systems.

Here are the GitHub repositories of Microsoft . NET WPF and Microsoft
.NET Windows Forms that now are officially .NET Core-based Ul
frameworks:

GitHub repository for .NET WPF UI Framework (https://
github.com/dotnet/wpf): The WPF is now officially
a .NET Core-based Ul framework for development of
applications and components for Microsoft Windows
Desktop. It runs exclusively on Microsoft Windows
family of operating systems. It relies on Microsoft DirectX
technologies, has a vector-based graphics architecture
which enables the use of high-DPI monitors and infinity
scale, and uses the Extensible Application Markup
Language (XAML) to provide a declarative model for
application programming.

https://github.com/aspnet/AspNetCore
https://github.com/dotnet/wpf
https://github.com/dotnet/wpf

CHAPTER 1 ABOUT .NET CORE

e GitHub repository for .NET Core Windows Forms UI
Framework (https://github.com/dotnet/winforms):
The Windows Forms is now officially a .NET Core-based UI
framework for developing applications and components
for Microsoft Windows Desktop. The Windows Forms UI
Framework runs exclusively on the Microsoft Windows
family of operating systems and relies on Microsoft
Windows GDI+ technology.

Target Framework Moniker

To specify one or more target frameworks of an application or library, you
must use a standardized token format, the Target Framework Moniker.

At the time of this writing, here is the listing of TFMs currently
supported by the Microsoft Visual Studio XML-based project file format
and application configuration files for .NET:

e .NET Standard:
e netstandardl.0
¢ netstandardl.1
e netstandardl.2
e netstandardl.3
¢ netstandardl.4
o netstandardl.5
e netstandardl.6
¢ netstandard2.0

e netstandard2.1

https://github.com/dotnet/winforms

CHAPTER 1 ABOUT .NET CORE

o .NET Core:
¢ netcoreappl.0
¢ netcoreappl.l
e netcoreapp2.0
e netcoreapp2.1
¢ netcoreapp2.2
e netcoreapp3.0
e netcoreapp3.l

¢ .NET Framework:

e netll
e net20
e net35
¢ net40
¢ net403
e net45
e net451
e net452
e net46
¢ net461
e net462
e netd7
e net471
o net472
e net48

CHAPTER 1 ABOUT .NET CORE

¢ Universal Windows Platform:
e uap (instead of uap10.0).
e uapl0.0 (instead of win10 or netcore50).

For .NET Core, Microsoft officially released the .NET Core 3.1 GA LTS
in November of 2019. The company is reorganizing Microsoft .NET and
by the 2020 there will be only one .NET, and no more .NET Framework
and .NET Core. You can read more at https://devblogs.microsoft.com/
dotnet/introducing-net-5/.

According to an officially chronogram, Microsoft has the following
releases scheduled:

e The new .NET 5.0 (GA) for November of 2020
e« .NET 6.0 (LTS) for November of 2021
e .NET 7.0 (GA) for November of 2022
e .NET 8.0 (LTS) for November of 2023

When you are developing a library or code base that should be used
as the starting point for more advanced software libraries and code bases,
you must be aware of certain details for your projects and source code. The
Target Framework Moniker is one of these details.

With the Microsoft Visual Studio Project’s XML-based file format, you
have a specific XML configuration tag and an object type available with the
Microsoft Visual Studio Object Model for programming with this property.

The <TargetFramework> </TargetFramework> tagis used for
configuring the Microsoft Visual Studio project for the main supported
version of .NET Core. For the examples in this book, you'll use .NET Core
version 3.1, as shown in Listing 1-1.

https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-5/

CHAPTER 1 ABOUT .NET CORE

Listing 1-1. Excerpt of the Content of the Sample .csproj project
File with the TargetFramework Property Configured for .Net Core
Version 3.1

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFrameworks
</PropertyGroup>

<PropertyGroup Condition="'$(Configuration)|$(Platform)'==
'Debug |AnyCPU" ">

<DefineConstants>DEBUG; TRACE</DefineConstants>
</PropertyGroup>

</Project>

For example, in a configuration file of a .NET application or library,
every time you set a version of the .NET platform, .NET Core, or .NET
Framework, you use one of the standardized tokens for a TFM.

Now let’s start writing the base structure for the sample RV].IO .NET
Core library based on .NET Core 3.1 using the features and facilities of
Microsoft Visual Studio 2019 for .NET Core in the next section.

Creating the RVJ.IO Library for .NET Core
Using Microsoft Visual Studio 2019

Microsoft offers great support for the development of .NET Core from the
Microsoft Visual Studio IDE. The images and comments in this section
are based on features of Microsoft Visual Studio 2019 (Community,
Professional, Enterprise) version 16.5.0 and .NET Core 3.1 GA LTS.

CHAPTER 1 ABOUT .NET CORE

At the time of this writing, for Microsoft Visual Studio Enterprise 2019,
these are the typical project templates for .NET Core and .NET Standard:

Container Application for Kubernetes (C#, Azure)

Console App (C#, F#, Visual Basic, Linux, macOS,
Windows)

ASP.NET Core Web Application (C#, F#, Linux, macOS,
Windows)

Blazor App (C#, Linux, macOS, Windows)

Class Library (.NET Standard) (C#, F#, Visual Basic,
Android, i0S, Linux, macOS, Windows)

gRPC Service (C#, Linux, macOS, Windows)
Razor Class Library (C#, Linux, macOS, Windows)
Worker Service (C#, Linux, macOS, Windows)

MSTest Test Project (C#, F#, Visual Basic, Linux,
macOS, Windows)

NUnit Test Project (C#, F#, Visual Basic, Linux, macOS,
Windows)

WPF App (C#, Windows)

WPF Custom Control Library (C#, Windows)
WPF User Control Library (C#, Windows)
Windows Forms App (C#, Windows)

Class Library (.NET Core) (C#, F#, Visual Basic, Linux,
macOS, Windows)

xUnit Test Project (C#, F#, Visual Basic, Linux, macOS,
Windows)

CHAPTER 1 ABOUT .NET CORE

e Web Driver Test for Edge (C#, Windows)

e Code Refactoring (.NET Standard) (C#, Visual Basic,
Linux, macOS, Windows)

e Analyzer with Code Fix (.NET Standard) (C#, Visual
Basic, Linux, macOS, Windows)

e Stand-Alone Code Analysis Tool (C#, Visual Basic,
Linux, macOS, Windows)

e CLR Empty Project (C++, C++/CLI, Windows)
e CLRClass Library (C++, C++/CLI, Windows)

Figure 1-1 shows the Start window with some project templates listed
in the center, filtered by the C# programming language and Library as the
project type. It shows the listed template projects for .NET Standard, .NET
Core, .NET Framework, and UWP such as Class Library and WPF Custom
Control, for example.

Create a new project e o-
Becent project templates = . M - [t ';
5] Dlark Solusion * gy ©

ks Rorary tht targeti NFT Standeed.

57 Ergty Pocjet W5 Ui malS Wi Uoay

i Razer Class Liboary.
18 Wngow Dutacp Spparie o an!t B prejeet semplule foe cresting & Racew elaay Bbiasy.
5 Windowt Fesmt Aps LNET Framenedd o €0 U meOS Wesess Loary o
= W Custom Contral Library HET Care)
B Comcle App [HET Frameweed) o oy, "

B Comole App (HET Cosed [

" WOF Uher Comtrel | ibray { NET Core)
B Dymamic-Line Library (0L Coe o Windzwt Prasentition Foundition usas contrel bvary

0 Weow Demtm Uy

@ Shawed Sem: Pacject Ce

g Clas wres indow)

&.l Class Lilbeary (U nd\M iy

B Comola dpp Ces e

Bl Clma Larnry {HET Framewoek]
RS Class Wbrary (NET Framenod)
12 Blank 2pp (lieiersal Windews - Co o0 [SR A prsject for creating # £ clavs Bbeary A1)
o Wadow sy

Figure 1-1. Microsoft Visual Studio 2019 Start window showing the
list of project templates

10

CHAPTER 1 ABOUT .NET CORE

Figure 1-2 shows the Start window with the Class Library (.NET Core)
template project selected for the sample project’s RV].IO custom class library.

Create a new project

Becent project templates
B Btark Solusion

1 Empty Pocject

B Windows Deshiep Appicatin
5 Windowt Fesmt Aps LHET Framenedy
B Comole App [HET Frameweeid)
B Comole pp HET Corel

B Gymarmic-dink Uoray (A1)

B Shawed Sem: Facject

B Comslafipp

B Clavy Eryey (HET Framaewrcel]

12 Blank 2pp (lieiersal Windiows - Co o0

o= < Mglstiews - Ly

W™ WP Unar Comtrol Libracy CHET Cared

Al Windom Prrirntation Fourdation e centiol Bbaary
€ Weiow Dt Lbey

l—.\- Claga Labvary (Wversal Wirndow]

S0 et cesing o g s sy LA o Ui W Platcem LZNP] 5.
o Wetews Ly U

%.!. Chass Usrary [MET Frarmenca)

Sl 4 praict tee creating a € clags Beary)
B

e sty

f gjl Clavs Kitary [NET Cor)

£ prsjuct for eraating b clbis likiaey that tagets NET Ceve.

O Wedow Unr ms0f Lbury

gi WPF Cusbor Cortiol Libeary LHET Frameword

Windes Presencathon Foundation cusiom cotrol Fbiary
€0 Wetew Desitw Lo

W s Camtrel Libewy CNET fuamewark)
Windza Presentation Foundstion user control Bteary
€ Wetow Deto Loy

Figure 1-2. Class Library (.NET Core) template project selected for
the project’s RV].10 custom class library

In the companion source for this book, the sample project can be
opened from the path <install folder>\Projects\RVI\Books\CLR\
System.IO\Cho1\. Figure 1-3 shows an example of the name and path
configurations for the RV].IO custom class library project using .NET Core.

11

CHAPTER 1 ABOUT .NET CORE

Configure your new project

Class Library (WET Core) ¢ wWroon Usa weds Uy

CAPregeeti R NBe i CLR System VT HNL
Salution same)
o

] Pl ustatins and praject in the s geectery

Figure 1-3. Name and path configurations for the RV].1IO custom
class library project using .NET Core

Figure 1-4 shows the RV].IO custom class library project using .NET
Core, created and shown in the environment of Microsoft Visual Studio 2019.

quﬁ ESt Yew Projoct Budd Debug Anghitechoe Test Asshze Joch Extermiens Windew Help Search (uleQ P R @
EES < 0| Debwg -] AnyCRU srRo- 6@, Bk, L v R X S B 1 ashee | ADMIN

§ [Cssies @ %

§ |EERD = %2 VLI Ches]

1
2
3
4
5
6
7

using System;

=namespace RVLIO{

=-public-class Class1{

}
t

o

Figure 1-4. The RV].IO custom class library project, created and
shown in Microsoft Visual Studio 2019

12

CHAPTER 1 ABOUT .NET CORE

In the Debug tab, you can check the box for Enable native code
debugging, as shown in Figure 1-5.

B B S Vew Pjot Buld Debog Amhitechue Tt Acshoe Toch Etormiow Miadew Help SeerchiCuled 2 ma @ - -] x
-0 Bt @P - < | Debwy -| AnycPu kP S @, B-F-, B- 0-, B-0-, 1 ashee P | ADMIN
[owe (TN 0 x

¥ appiession

Ene rorment vanaeles Pame Value

7 frabin nathe cce detuggng

(WL p———

Figure 1-5. Check the project property Enable native code debugging
in the Debug tab

Now, with some configuration changes, you can check the XML for
the .csproj project file of Microsoft Visual Studio. You should have the
fundamental configurations represented via an XML tag and with one or
more values, as shown in Figures 1-6 and 1-7, and Listing 1-2.

13

CHAPTER 1 ABOUT .NET CORE

b G
°-

B8t Yow Projt Buld Dobeg Amhitechas Tt Assioe Tech Etewion Mindew Hep

=i Debeg - kR0 @@, @E-k-, B 0-,

Search iT

@ - Ay CPU

Clasiee R¥LD & %

[
Bald Dvents

=qre

WA
Asuemby name
L

Tesget frameaods
HNETCare 30
Sartun object
Mteey

Defsut nammespace:
Lk

Factage

Outpnt ype:
| Clam ey

Revources
Spacty hoor appheation eptureas wil be maraged:
@ esn sad mantast

Amaedet Fesiadd tte

T BrOgCT 3 than sabect it o th bt b,
feoes

Viwne Prafiler
L

Fabskt

Cheag
Anslyze and Code Clesrmp .
ek

Puipicn

Pemer Cormmands .
Mubiingual App Tsckt
Fie Neiting .
Scopeta This

Hen Soation Sxalores Wien
Show anGode i

Folt Pucject file

Add

ek Instal Package.
Maruge et Packiges
Mansge Uses Sectets

Set as Stadtlp Project.
Dubag.

Sowce Contred

Licerae Headent

Anahize Preject Partabisy
Festabifty Anabzes Settiegs
Cut

B
®

T Hm

ShiteAed

o

1g¢§
=

Unioad Preject
Load Pugjest Dependencies

Figure 1-6. Opening the project file .csproj using the option Edit

Project File

B Bk ESt Vew Pt Buld Debg BV Actectwr Tk Aasbes Teoh Gemknms Wndew Heb | Sea Al Rwo @® - 85 =
-] LR Debeg - AnyCPU sk @@, B-b, ERAML Fmipa Tu M Nh i teeshes | ADMEN
7t e = | Saietion Explorar -ax
H 1 =<Project Sdk="Microsoft.NET.Sdk"> + @HE- B-s e K-
2 T | Sewrch S s plarer [Clrle ;) P
3 = <PropertyGroup> ?s_ﬂ.em"““‘d“W1
4 <TargetFramework>netcoreapp3.1</TargetFramework> i ;:;’::‘i"
5 <Applicationlcon /> E R =
6 | <DutputType>Library</OutputType>
7 <StartupObject />
8 <Version>1.0.0.0</Version>
9 | <fPropertyGroup>
10
11 = <PropertyGroup Condition=""$(Configuration) | $(Platform)'=='Debug | AnyC
12 <DefineConstants>DEBUG; TRACE </DefineConstants>
13 <AllowlnsafeBlocks=tr fAllowUnsafeBlocks:
14 | </PropertyGroup>
15
16 | <fProject=
i7 o
5 e ‘ o e we o
put s Uit

Figure 1-7. The XML tags with configuration values for the options

in the sample project

14

CHAPTER 1 ABOUT .NET CORE

Listing 1-2. XML Tags in .csproj with the Configured Option Values
for the Sample Project

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFrameworks
<ApplicationIcon />
<OutputTypesLibrary</OutputTypes
<StartupObject />
<Version»1.0.0.0</Version>

</PropertyGroup>

<PropertyGroup Condition=""$(Configuration)|$(Platform)'==
‘Debug | AnyCPU" ">
<DefineConstants>DEBUG; TRACE</DefineConstants>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>

</Project>

Your .NET Core or .NET Framework applications and libraries can also
target a version of .NET Standard, which are standardized sets of APIs that
work across all .NET implementations. Using a library such as the RV].IO
sample project, you can target a version of .NET Standard and gain access
to APIs that work across .NET Core and .NET Framework using the same
code base. In Listing 1-3, you change the RV].I0.csproj project file to use
TFM for .NET Standard version 2.1. Note that the target framework in the
project properties is also automatically changed, as shown in Figure 1-8.

15

https://docs.microsoft.com/en-us/dotnet/standard/net-standard

CHAPTER 1 ABOUT .NET CORE
Listing 1-3. Configuration File Using .NET Standard 2.1
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<!--<TargetFramework>netcoreapp3.1</TargetFramework>-->

<TargetFramework>netstandard2.1</TaxgetFramework>

<ApplicationIcon />

<OutputTypesLibrary</OutputTypes

<StartupObject />

<Version»1.0.0.0¢</Version>
</PropertyGroup>

<PropertyGroup Condition=""'$(Configuration)|$(Platform)'==
'Debug | AnyCPU" ">
<DefineConstants>DEBUG; TRACE</DefineConstants>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>

</Project>

16

CHAPTER 1 ABOUT .NET CORE

B B S Yew Pjed Buld Debog Amhitechur Tt Acshoe Toch Etormions Mindew Help SerchiCuled - T @ - | x
e Bt = | Debwg - AnyCPU kP S @, B-F-, B- 0-, B-0-, i veshee P | ADMIN
koo TR

(1 - A

cha

=qra

P

Bald frents Actambly ramer Ontaut namespace:

Paciage (])
Deng Teget ramemod Outpat type:
Sigring

Fen ndd it e

Dutpur Fiva L

Figure 1-8. The target framework on the project properties is also
automatically changed to using the .NET Standard for your class
library project

You should be aware of deprecated TFMs that should be updated to
the new TFMs. Here is a list of deprecated TFMs and the replacements:

e The TFM netcoreapp is the replacement for the
following deprecated TFMs:

e aspnet50
e aspnetcore50

e dnxcore50

¢ dnx

e dnx45
e dnx451
e dnx452

17

CHAPTER 1

ABOUT .NET CORE

The TFM netstandard is the replacement for the
following deprecated TFMs:

e dotnet

e dotnet50
e dotnet51
e dotnet52
e dotnet53
e dotnet54
e dotnet55
e dotnet56

The TFM uap10.0 is the replacement for the following
deprecated TFMs:

e netcore50
° winl0

The TFM netcore45 is the replacement for the
following deprecated TFMs:

e Win
e Win8
e winrt

The TFM netcore451 is the replacement for the
following deprecated TFM:

¢ win8l

If you are migrating or developing a .NET project that should support
NET Framework and .NET Core, you should use the <TargetFrameworks>
</TargetFrameworks> tag (plural), instead of <TargetFramework/> tag (singular).

18

CHAPTER 1 ABOUT .NET CORE

The use of <TargetFrameworks></TargetFrameworks> tag (plural) is also
required if you are using multiple versions of the same framework for the same
project, thatis, NET Framework or .NET Core.

Listing 1-4 contains the RV].I0.csproj sample project file using the
<TargetFrameworks></TargetFrameworks> tag (plural) for supporting
netcoreapp3.1 TFM and netstandard2.1 TFM.

Listing 1-4. Project File Supporting netcoreapp3.1 TFM
and netstandard2.1 TFM Using the <TargetFrameworks>
</TargetFrameworks> tag (plural)

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<!--<TargetFramework>netcoreapp3.1</TargetFramework>-->
<!--<TargetFramework>netstandard2.1</TargetFramework>-->

<TargetFrameworkssnetcoreapp3.1;netstandaxd2.1</
TargetFrameworks>

<ApplicationIcon />

<OutputTypesLibrary</OutputTypes

<StartupObject />

<Version»1.0.0.0</Vexrsion»
</PropertyGroup>

<PropertyGroup Condition=""'$(Configuration)|$(Platform)'==
'Debug | AnyCPU" ">
<DefineConstants>DEBUG; TRACE</DefineConstants>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>

</Project>

19

CHAPTER 1 ABOUT .NET CORE

When supporting various target frameworks, you need to change
your source code too because not every .NET type exists in every
implementation of the target .NET library. So, you need to use
preprocessor directives for conditional inclusion of blocks of source code
depending on the configured target frameworks. Listing 1-5 contains the
RVJ].IO source code with the conditional symbols for TFMs netcoreapp3.1
and netstandard2.1. At the time of this writing, this is the list with
conditional symbols representing the TFMs:

o For the .NET Framework, the conditional symbols are

o NETFRAMEWORK

e NET20
o NET35
o NET40
e NET45
o NET451
o NET452
¢ NET46
o NET461
o NET462
e NET47
o NET471
o NET472
e NET48

20

CHAPTER 1 ABOUT .NET CORE

For the .NET Core, the conditional symbols are
o NETCOREAPP

o NETCOREAPP1_0

¢ NETCOREAPP1_1

o NETCOREAPP2_0

o NETCOREAPP2_1

¢ NETCOREAPP2_2

¢ NETCOREAPP3_0

NETCOREAPP3_1

For the .NET Standard, the conditional symbols are
e netstandard

e netstandard1_0

e netstandardl_1

e netstandardl_2

e netstandardl_3

e netstandardl_4

e netstandardl_5

e netstandard1_6

e netstandard2_0

¢ netstandard2_1

21

CHAPTER 1 ABOUT .NET CORE

Listing 1-5. RV].IO Source Code with the Symbols for TFMs
netcoreapp3.1 and netstandard2.1

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {
public class Classi {
public Class1() {
#if NETCOREAPP3 1 || netstandard2 1

#if DEBUG
Debug.WritelLine("Using DEBUG symbol!");
#endif
#endif
}

b
b5
Summary

The next two sections offer recommendations about the use of
characteristics of .NET Core.

22

Dos

CHAPTER 1 ABOUT .NET CORE

If a project needs the functionalities of specific .NET
types, use .NET Framework until the functionalities
that the project requires are available for .NET Core and
.NET BCL/FCL Core.

Be aware that the .NET Core runtime and infrastructure
components of .NET Core are the bases for all Microsoft
.NET investments from now on. This non-specific
development platform is available for Microsoft
Windows, Linux implementations, and the Apple
macOS platform. This opens up new opportunities for
application, library, and component developers.

When necessary, work with a higher-level API for
your code and consider APIs that abstract the details
of a more specific operating system and low-level
programming.

If you are planning to migrate a big application such as
an ERP or CRM to .NET Core, remember to establish
business goals for multiplatform opportunities and do
not focus only on the technical aspects.

Use .NET Core 3.1 LTS to start any big migration to the
.NET Core platform.

23

CHAPTER 1

Don’ts

24

ABOUT .NET CORE

Start a project using a version earlier than .NET Core 3.1
LTS. This is a Microsoft recommendation because previous
versions are not supported for the long term. There are
more features available, and it will facilitate the migration
to .NET 5, which will be available in November of 2020 and
will replace all previous versions of NET Framework and
.NET Core, including .NET Core 3.1.

Consider any big migration to .NET Core until all of the
functionalities that the project will be using are available
for .NET Core and .NET BCL/FCL Core, especially
Microsoft Windows Forms and Microsoft WPE

Define goals based on superficial technical
observations about .NET Core. Instead, create pieces of
software based on the required functionalities for your
applications, libraries, and components, and make
objective tests.

CHAPTER 2

Overview of
Architecture for
Implementation

In this chapter, I will talk about the architecture for implementing a custom
library using .NET Core System.IO features.

RVJ.10 Custom Library and the Architecture
for Implementation

The .NET Core platform can be used to develop a redesigned
implementation of extraordinary technologies, and the RV].IO custom
library has the architecture for implementation organized with the
purpose of encapsulating and simplifying the use of resources available in
.NET Core data types in BCL System.IO.* namespaces, via managed and
unmanaged APIs.

At the time of this writing and for .NET Core version 3.1, the following
namespaces are available for the System.IO.*:

e System.IO (root namespace)

o System.lO.Pipes

© Roger Villela 2020 25
R. Villela, Understanding System.IO for .NET Core 3,
https://doi.org/10.1007/978-1-4842-5872-9_2

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

e System.IO.Packaging

e System.IO.Enumeration

e System.IO.Compression

o System.IO.IsolatedStorage

e System.IO.MemoryMappedFiles

In this book, we will use the .NET Core data types available in the
.NET Core BCL System.IO (root namespace) for the sample project RV].IO
custom library .NET Core data types and demonstration for the model of
the implementation, but the general concepts, ideas, and organizational
distributions apply to the other namespaces of BCL System.IO.* when
implemented.

Figure 2-1 shows a high-level view of the organizational architecture
and distribution of responsibilities by technological contexts.

For example, Client Application One, Client Application Two, and Client
Application “N” are typical .NET Core applications such as WPE Windows
Forms, Console, other .NET Core libraries, or any other .NET Core type
application that can access the .NET Core System.IO resources encapsulated
by the RV].IO custom library or any other .NET Core custom library.

The .NET Core RVJ.IO (custom library) context encapsulates the
resources and functionalities of the .NET Core data types available in
System.IO.* namespaces, managed data types, and unmanaged data

types.

26

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

Client Client Client
Application Application Application
One Two "N"

Support
RVJ.10 (custom library) Libraries
(internal)

System.lO(root namespace)

Figure 2-1. Suggested architecture for implementation and
distribution of responsibilities in technological contexts

The context for the Support Libraries (internal) are more .NET Core
projects or non-.NET Core projects that provide the support required by
the resources encapsulated by the .NET Core RV].IO custom library. For
example, if a .NET Core RV].IO custom library requires C/C++ source
code for managing certain unmanaged resources for integrating the
features into the .NET Core RV].IO custom library, these details are the
responsibility of these internal support libraries.

The Client Applications context never directly access these internal
support libraries. Only the .NET Core RV].IO custom library can access
these internal custom libraries, directly or indirectly via other libraries.

Another important aspect is that not every resource or feature of
the System.IO.* namespaces is available for .NET Core yet and will not
be available for a while. Remember that System.IO.* was developed for
the .NET Framework and some portions of the System.IO.* data types
have been ported to .NET Core and work on multiple platforms, such as
Microsoft Windows, Linux distributions, and Apple macOS, but other

resources are made specifically to work with Microsoft Windows, or some

other operating system for specific scenarios.

27

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

For example, the NET Core BCL System.IO has the abstract concept of a
data stream defined as a sequence of bytes, and we have the concept of a data
stream implemented as the System.IO.Stream reference data type, that is an
abstract reference type.

The System.IO.Stream is the base reference type for all .NET types of streams
defined in the System.IO.* namespaces and other namespaces of other NET
Core assemblies, such as

e System.IO.FileStream

e System.IO.BufferedStream

o System.Data.OracleClient.OracleBFile
o System.Data.SqlTypes.SqlFileStream

At the time of this writing, System.Data.OracleClient.OracleBFile and
System.Data.SqlTypes.SqlFileStream are not available yet for .NET Core,
only for .NET Framework, but the documentation of the System.IO.Stream
abstract reference type indicates a general view of some important derived
reference types, not considering .NET Core or .NET Framework as a filter
in the documentation, as you can see in Figure 2-2.

Bf | B! v o Grieamjie: x [S
L O @t & mpsdoecsmiousobicom/ien-us/dotnet/aplsystem o stream ewr= netcone 3.1 B % W a = R B -
B Microsoft | .NET dbout Leam Architectre Docs Downloads Community | GetStarted | Search 2
Docs / NET / MNETAP| browse: Systen)0 |/ Steeam o~ [Bookmark & Bdit 1 Share 3 Theme rogenillelajournal
Version Stream class Is this page
TCore 3 : helpful?
MET Care 2.1 > i
Namespace: System.iQ
s : ey oo i 5 Yes
£ Search Assernblies: SystemiOdll, mscodib.dll, netstandard dll, System Runtime 28
=l
- s -
— Provides a generic view of a sequence of bytes. This is an abstract class. Inthis
Constructors o B Copy article
> Figlds | oefiniticn
[Systen. Auntine. InteropServices. Comisible(true)]
* Properties [syst 1o Eamales
» Metheds public abstract class Stream : MarshalByRefObject, IDisposable
» Explicit Interface
Implemantations Inheritance Object - MarshalByRefObject -» Stream s
> StreamAeader Constructors
3 Choanmalliv - = Derived Microsoft)Script.COMChasStream Flelds

+ Dewnlaad POF System.Data OrackeClient OracleBFile Properties

Figure 2-2. Microsoft official documentation for the System.
10.Stream abstract reference type in .NET Core

28

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

If you click the link for System.Data.OracleClient.OracleBFile
or the link for System.Data.SqlTypes.SqlFileStream, you will see the
documentation pages for both .NET data types with an alert at the top of
the page saying that the current .NET type does not exist for .NET Core, as
shown in Figures 2-3 and 2-4.

Some important .NET data types are available as extension packages
via NuGet and can be implemented in future distributions of both .NET
Framework and .NET Core. When planning the architecture for the
implementation of custom libraries in general, you must consider these
scenarios and include some programming logic in your source code base
to deal with these scenarios.

B | BT Cocttrit G ipmemDanat x | - 8
“= O @B A netpsy/docemicrosofucomyen-us/dotnet/api/system data oraclecient oraclebfiletiewenetira. (8 B, % @ a /= & 8 -
B® Microsoft] UNET About Learn Aschitecture Docs Downloads Community | Get Started Search 2
Docs / MNET / MET APl browser / System Data.CracleClient &[] Bockmark & Edit ¥ Share % Theme
OracleBFile rogendllelajourmal
(D The requested page is not available for NET Core 3.1. You have been redirected to the newest product version this page is ts
available for.
- OracleBFile Class hthis page |
NET Framework 4.8 w 5 helpful?
Mamespac tem. Dista OracleClient
& Yes
O Search Assambly: System Data OracieCliont dll o
£ANe
System.Data.OracleClient . - :
Represents a managed OracleBfile object designed to work with the Oracle In this
~ Oradetfile BFILE data type. This class cannot be inherited. i
OracleBFile
> Fields e o copy | oefinition
Remarks
N Drimitine public sealed class OracleBFile : System.I0.Stream, ICloneable, e
L Dewnlead POF System_Data.5qlTypes. Thul lable i
Branaias

Figure 2-3. Microsoft official documentation page for System.Data.
OracleClient.OracleBFile with the information that, at the time of this
writing, the page for .NET Core does not exists

29

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

B | B7 sefdcsisn Qs Bl X | + - 8 X
“~ O @ A netpsydocemicrosoftcomyen-us/dotnet/apl/system data sqltypes.sqfilestreamdiew=retiram.. [5 % @ na 5 R OR -
BY Microsoft | .NET About Lesrn Awchitectwe Docs Downlosds Community | GetStarted Search O
Does / NET / MET AP browser | System.Data SqlTypes c&~ [l Bookmark & Edit £ Share % Theme
SqlFileStraam rogendllelsjoumal
(D The requested page is not available for NET Core 3.1. You have been redirected to the newest product version this page is ts
available for.
- SqlFileStream Class e this page |
HE F helpful?
ET Framework 4.8 :
NET Fra i = Namespace: System.Data.5q/Types i
£ Search Assomblies: System.Datadll System Data SqiCEent.dll i
- £ No
- "
SqlFileStream Exposes SOL Server data that is stored with the FILESTREAM column attribute In this
Constructors a2 sequience of bytes. article
» Properties ce 1y Copy | Definition
* Methods . Remarks
public sealed class SqlFileStrean : System,I0.5tream S
Comstructors
4 Download PDF

Branartiog

Babndbnnen Mhinct o barchal Bdinffibinet @ Chranm 3 CalCilaCirmnm

Figure 2-4. Microsoft official documentation page for System.Data.
SqlTypes.SqlFileStream with the information that, at the time of this
writing, the page for .NET Core does not exist

It is important to use the symbols for conditional compilation if you
need to work with source code for more than one implementation version
of.NET Core and to work with a source code base with support for NET
Core and .NET Framework.

For example, Figure 2-5 shows a solution named RV].I0.sln with a
source code file of Class1.cs with examples of conditional compilation
symbols such as DEBUG, NETCOREAPP3_1, and netstandard2_1.

Listing 2-1 contains the source code available in the Class1.cs file.

Listing 2-1. Example of the Use of Conditional Compilation
Symbols

using System;

#if DEBUG

using System.Diagnostics;
#endif

30

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

namespace RV].IO {
public class Classi {
public Classi() {
#if NETCOREAPP3_1 || netstandard2_1

#if DEBUG
Debug.WritelLine("Using DEBUG symbol!");

#tendif

#tendif

};
};

B Bk Bt Yew Pt Buld Debvg Team Ashitectun Ten Agshos Teob Exterdions Windew Help | Scurch (Culed 2 maw @
Bt WP T Debwp - AnycPU R0 A @, Wf Tu A & e
Sattion Explarar
FEIRVLIO inetcoeappl T} | %2 RVLIO.Clasa] [@ Qs | RAE- -8B S =
1 =using-System; L P e [t
5] Sebetion RV (1 of 1 project]
2 #if DEBUG a Ao
3 using System.Diagnostics; b I Depandescins
L b Properies
4 #endif B Classlcs
5
6 =namespace RVL.IO{

7¢ =--publicclass Cfassj-ﬂ

8 & pui:lic{.lass':{}{

9 | #if METCOREAPP3_1 | | netstandard2_1
10
11 #if DEBUG
12 4 ‘Debug.WriteLine{ "Using DEBUG symbell");
13 #endif
14
15 Hendif
16

i+ & Nehue e . T S Corss S ome

Figure 2-5. Source code for Class1.cs using DEBUG,
NETCOREAPP3_1, and netstandard2_1 conditional compilation
symbols

31

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

At the time of this writing, the .NET Core conditional symbols are
e NETCOREAPP
e NETCOREAPP1_0
¢ NETCOREAPP1_1
e NETCOREAPP2_0
e NETCOREAPP2_1
¢ NETCOREAPP2_2
e NETCOREAPP3_0
e NETCOREAPP3_1
At the time of this writing, the .NET Standard conditional symbols are
e netstandard
e netstandardl_0
e netstandardl_1
e netstandardl_2
e netstandardl_3
e netstandardl_4
e netstandardl_5
e netstandard1_6
e netstandard2_0
e netstandard2_1
At the time of this writing, the .NET Framework conditional symbols are
e NETFRAMEWORK

e NET20

32

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

e NET35
e NET40
o NET45
e NET451
o NET452
o NET46
o NET461
o NET462
o NET47
o NET471
o NET472
o NET48

Encapsulating Data Types

You should encapsulate .NET Core data types in BCL System.IO.*
namespaces such as .NET Core enumerations to avoid exposing any
specific kind of .NET Core data type in BCL System.IO.* directly through
your .NET Core RV].IO custom library programming interfaces.

This encapsulation via RV].IO custom data types helps, for example,

o protect the conceptual model of your custom library.

o manage updates of .NET Core BCL System.IO.* through
your custom libraries.

o manage updates of the .NET Core infrastructure
throughout your custom libraries APIs.

e update the management of your custom libraries APIs
in future fixes, when necessary.

33

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

For example, in the System.IO namespace, you have common .NET
Core enumerations that should be encapsulated in custom data types of
your RV].IO custom library. Listing 2-2 shows some enumeration members
of System.I0.DriveType encapsulated in a RV].IO.DriveType enumeration.

It is important to remember that you do not have to encapsulate
every member of System.IO namespaces in a data type in RV].IO at the
first moment. You must include custom data types that help your custom
library and simplify the use of the .NET Core System.IO namespace data
types encapsulated.

You must include a specific .NET Core System.IO data type as part of
the encapsulated RV].IO custom data types by demand, and not just by
doing a map one-by-one without a specific good technical reason or
good business reason. For example, for the RV].IO.DriveType shown in
Listing 2-2, not all members of the System.IO.DriveType enumeration are
included; only the most common ones are.

Figure 2-6 shows a suggested set of data types of .NET Core System.IO
as part of sample project RV].IO. This will be shown in more detail starting
in Chapter 3.

Listing 2-2. Encapsulating Common Members of System.
10.DriveType

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {
public enum DriveType {
Fixed = System.I0.DriveType.Fixed,
Ram = System.I0.DriveType.Ram,

34

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

Network = System.I0.DriveType.Network,
CDRom = System.IO.DriveType.CDRom,
Removable = System.I0.DriveType.Removable

};

} .
)
B Bl M Yew Brujt Buld Debg Achitectre Tet Aose b Etewions Windew Hep SeerchiCuleD £ maw ® - o x
-0 @Bt WP - - | Debwy - Angcou s eR0- B, n o i eashee EF | ADMIN
bncymmacns oavips s s e - R ¥
FelRvLO [T e— — e - & -
1 =using-System;
2 #if DEBUG
3 using System.Diagnostics
4 #endif
5
6 =namespace RV].IO{
8 =t
9
10 OVERVIEW
11
12 The-RV..10.SearchOptionsForDirectories.All includes the current @
directory and allits subdirectories in a search operation. This option 3
includes reparse-points such-as mounted-drives-and symbolic linksin#
the search.
13
14 The RVI.10.5earchOptionsForDirectories.Top includes-only the current-#

dirartaryin-asparch-aneration, -
[ks Ml oen s qme

Figure 2-6. Showing RV].1I0 examples of data types encapsulating
Jfunctionalities of NET Core data types of the BCL System.IO namespace

Listing 2-3 shows the implementation of the RV].IO.FileMode .NET
Core enumeration that encapsulates some members of the System.
10.FileMode .NET Core enumeration.

Listing 2-3. System.lO.FileMode Members Encapsulated by RV].
10.FileMode

using System;

#if DEBUG

using System.Diagnostics;
#endif

35

CHAPTER 2

OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

namespace RV].IO {

36

/%

OVERVIEW

The RVJ.IO.FileMode.New method specifies that the
operating system should create a new file. This
requires write permission. If the file already exists,
an IOException exception is thrown.

The RV].IO.FileMode.Create method specifies that the
operating system should create a new file. If the
file already exists, it will be overwritten. This
requires Write permission. System.IO.FileMode.Create
is equivalent to requesting that if the file does
not exist, use CreateNew; otherwise, use Truncate.
If the file already exists but is a hidden file, an
UnauthorizedAccessException exception is thrown.

The RV].IO.FileMode.OpenOrCreate method specifies

that the operating system should open a file if it
exists; otherwise, a new file should be created. If the
file is opened with System.IO.FileAccess.Read, Read
permission is required. If the file access is System.
I0.FileAccess.Write, Write permission is required. If
the file is opened with System.IO.FileAccess.ReadWrite,
both Read and Write permissions are required.

The RV].I0.FileMode.Open Specifies that the operating
system should open an existing file. The ability to

open the file is dependent on the value specified by the
System.IO.FileAccess enumeration. A FileNotFoundException
exception is thrown if the file does not exist.

*/

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

The RV].IO.FileMode.Append opens the file if it
exists and seeks to the end of the file, or creates
a new file. This requires Append permission. System.
I0.FileMode.Append can be used only in conjunction
with System.IO.FileAccess.Write. Trying to seek to

a position before the end of the file throws an
IOException exception, and any attempt to read fails
and throws a NotSupportedException exception.

The RVJ.IO.FileMode.Truncate specifies that the
operating system should open an existing file. When the
file is opened, it should be truncated so that its size
is zero bytes. This requires Write permission. Attempts
to read from a file opened with System.IO.FileMode.
Truncate causes an ArgumentException exception.

public enum FileMode {

};
};

New = System.IO.FileMode.CreateNew,
Create = System.IO.FileMode.Create,
OpenOrCreate = System.IO.FileMode.
OpenOxCreate,
Open = System.IO.FileMode.Open,
Append = System.IO.FileMode.Append,
Truncate = System.I0.FileMode.Truncate

You can check the RV].IO custom library and see that you have

more custom enumerations that encapsulate .NET Core System.IO

enumerations and the same model for implementation is used.

But your .NET Core RV].IO custom library does not only encapsulate

enumerations.

37

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

When you are developing a custom library or a code base that should be
used as a starting point for more advanced software libraries and source code
bases, you must be aware of certain details of your projects and source code.

Your RVJ].IO will encapsulate specialized behaviors of .NET Core data
types available in the BCL System.IO namespace.

The .NET Core data types in System.IO.* namespaces do the management
of the input and output of operations via some type of data stream.

You need an enumeration that identifies this type of data stream, and
this is implemented in the source file StreamType. cs. Initially you have
three types of data streams, as shown in Listing 2-4.

Listing 2-4. Types of Data Streams Defined in the Enumeration RV]J.
I0.StreamType

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {

/*
OVERVIEW
*/
public enum StreamType {
Directory,
File,
Memory,

Unknown // The data stream is managed as a
pure sequence of bytes.
}s
};

38

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

When working with a data stream, one behavior that is necessary is to
get information about the data stream, and this is implemented in source
code file StreamInformation.cs, as shown in Listing 2-5.

The example shown in Listing 2-5 is just a suggestion with a sample
implementation and organization with some fields, methods, and
properties that can be useful for the management of information.

You can insert into this kind of data type some data stream information
that is generic enough, but more specific for an operating system or
technological contexts such as networks and databases.

Listing 2-5. Suggestion with Sample Source Code for an
Implementation of the .NET Core Data Type StreamInformation

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {

public sealed class StreamInformation : System.Object,
RVJ.IO.IStreamInformation {

#iregion Common Fields

// Type of data stream.

private StreamType _type;

// Name of data stream (real of not).

private String _name;

// Size (32-bit) of data stream, if available. Can be
zero or a negative value.

private Int32 sizelInBytes;

// Larger size (64-bit) of a data stream, if available.
Can be zero or a negative value.

private Int64 _largerSizelInBytes;

39

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

// Date of creation of data stream.
private DateTime creationDateTime;

// Date of last update of data stream.
private DateTime lastUpdateDateTime;
#endregion

#region Stream management typical fields
// The opened data stream of some specialized type.
private System.IO.Stream _dataStream;

// Type of operation, read/write/seek/all, that can be
used with the data stream.
private StreamOperationType operationType;

// Fields for working with the position when moving
between bytes within the sequence.

private UInt32 currentPosition32;

private UInt32 _nextPosition32;

private UInt32 previousPosition32;

private UInt64 _lastPosition32; // Not the last byte
in the data stream,
but the last useful
position for the
application.

private UInt64 _currentPosition64;

private UInt64 nextPosition64;

private UInt64 _previousPosition64;

private UInt64 lastPosition64; // Not the last byte
in the data stream,
but the last useful
position for the
application.

// The sequence of bytes stored in an internal data
stream.

40

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION
private Byte[] _internalStream;
#endregion

#iregion Constructors
public StreamInformation() : base() {

this. type = StreamType.File;

this. name = String.Empty;

this. sizeInBytes = new Int32();

this. largerSizeInBytes = new Int64();
this. creationDateTime = DateTime.Now;

this. lastUpdateDateTime = DateTime.Now;

this. dataStream = null;
this. operationType = StreamOperationType.None;

this. currentPosition32 = new UInt32();
this. nextPosition32 = new UInt32();
this. previousPosition32 = new UInt32();
this. lastPosition32 = new UInt32();
this. currentPosition64 = new UInt64();
this. nextPosition64 = new UInt64();
this. previousPosition64 = new UInt64();
this. lastPosition64 = new UInt64();

this. internalStream = null;

return;

}
public StreamInformation(StreamType type) : this() {

switch (type) {
case StreamType.Directory:
case StreamType.File:
case StreamType.Memory: {

41

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

b
break;
default: break;
}
return;
}
#endregion

#iregion Methods

/// <summary>
/// Verifies if the data stream was created.
/// </summary>
public Boolean Exists() {
Boolean exists = new Boolean();

return _exists;

}

/// <summary>

/// Tries to open the data stream.
/// </summary>

public Boolean Open() {

return new Boolean();

}

/// <summary>

/// Tries to read some portion of the data stream.

/// Returns the readed portion of data stream in a
System.Byte[] array.

42

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

/11 </summary>

public Byte[] Read(OperationDirection
operationDirection, UInt32 numberOfBytes, Boolean
asyncOperation) {

Boolean _argumentValuesValid = new Boolean();
UInt32 localValue = new UInt32();

switch (operationDirection) {

case OperationDirection.Forward: {

// The number of bytes must be greater
than zero.
_argumentValuesValid = (numberOfBytes
> localValue);

};
break;

case OperationDirection.Back: {
// The number of bytes must be negative.
_argumentValuesValid = (numberOfBytes
< _localvalue);

};
break;

default: // For the zero value, does nothing.
break;

}

if (asyncOperation) {
// Should use the async available methods for
management of data stream.
} else {
// Should use the non-async available methods
for management of data stream.

};

43

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

return this. internalStream;

}

/// <summary>

/// Tries to write to the data stream.
/// </summary>

public Boolean Write() {

Boolean written = new Boolean();

return written;

}

/// <summary>

/// Tries to close the data stream.
/// </summary>

public Boolean Close() {

Boolean closed = new Boolean();

return closed;

}

#endregion

#region Public Properties
/// <summary>
/// Type of data stream.
/// </summary>
public StreamType Type {
get {
return this. type;

}
set {

44

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

this. type = value;
return;

}

/// <summary>
/// Name of data stream (real or virtual).
/17 </summary>
public String Name {
get {
return this. name;

}

set {
if (!String.IsNullOrEmpty(value))
this. name = value;
return;

}

}

/// <summary>

/// Size of data stream (32-bit). Can be zero or a
negative value.

/// </summary>

public Int32 SizeInBytes {

get {
return this. sizelInBytes;

}

set { this. sizeInBytes = value; return; }

45

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

/// <summary>

/// Larger size (64-bit) of a data stream, if
available. Can be zero or a negative value.

/171 </summary>

public Int64 LargerSizeInBytes {
get { return this. largerSizeInBytes; }
set { this. largerSizeInBytes = value; return; }

}

/// <summary>
/// Date of creation of data stream.
/// </summary>
public DateTime Creation {
get { return this. creationDateTime; }
set { this. creationDateTime = value; return; }

}

/// <summary>
/// Date of last update of data stream.
/// </summary>
public DateTime LastUpdate {
get { return this. lastUpdateDateTime; }
set { this. lastUpdateDateTime = value; return; }

}

/// <summary>
/// Indicates the type of operation supported by the
data stream at this moment.

/11 </summary>
public StreamOperationType OperatingType {
get { return this. operationType; }
set { this. operationType = value; return; }

46

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

/// <summary>
/// Indicates if an operation of read can be realized.
/11 </summary>
public Boolean CanRead {
get { return this. operationType ==
(StreamOperationType.All | StreamOperationType.
Read | StreamOperationType.Seek); }

}

/// <summary>
/// Indicates if an operation of write can be realized.
/17 </summary>
public Boolean CanWrite {
get { return this. operationType ==
(RV].IO.StreamOperationType.All | RVJ.
10.StreamOperationType.Write); }

}

public System.IO.Stream DataStream {
get { return this. dataStream; }
set { if (value != null) this. dataStream =
value; return; }

}

#endregion

};
};

The idea of the RV].IO.StreamInformation reference type is to have
the common and most fundamental fields and behaviors for getting and
storing information of an instance of a data stream.

47

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

The .NET Core data type RV].IO.StreamInformation is a reference type that
can be used as the base class for other .NET data types that specialize in getting
information about a specific data stream, such as System.I0.FileStream, System.
10.BufferedStream, System.IO.MemoryStream, or others.

But, as shown in Listing 2-5, the sample implementation has the
sealed C# keyword, showing that another reference type cannot inherit
from RV].IO.StreamInformation reference type, directly or indirectly.

The RV].IO.StreamInformation reference type is derived from System.
Object and it implements the fundamental concepts of methods System.
Object.Equals(), System.Object.ReferenceEquals(), System.Object.
GetHashCode(), and System.Object.ToString(), for example.

The RV].IO.StreamInformation reference type implements the RVJ.
10.IStreamInformation interface that derives from the RV].I0.IStream
interface that is the fundamental abstraction for the idea of a data stream
that is part of the System.IO.* .NET Core libraries’ implementations.

Listings 2-6 and 2-7 show the first suggestion of the RV].IO.IStream and
RV].IO.IStreamInformation interfaces.

Listing 2-6. Suggestion for the RV].I0.IStream Interface

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {
/*
OVERVIEW

*/
public interface IStream {

48

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

#iregion Behaviors

/// <summary>

/// Tries to open the data stream.

/17 </summary>

Boolean Open();

/// <summary>

/// Verifies if the data stream was created.
/// </summary>

Boolean Exists();

/// <summary>
/// Tries to read some portion of the data stream.
/// Returns the readed portion of data stream

in System.Byte[] array.
/// </summary>
Byte[] Read(OperationDirection operationDirection,
UInt32 numberOfBytes, Boolean asyncOperation);

/// <summary>

/// Tries to write to the data stream.
/// </summary>

Boolean Write();

/// <summary>

/// Tries to close the data stream.
/17 </summary>

Boolean Close();

#endregion

#region Properties

/// <summary>

/// Base data stream object instance that was opened
for manipulation.

49

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

/// </summary>
System.I0.Stream DataStream { get; set; }
#endregion

};
};

Listing 2-7. Suggestion for the RV].IO.IStreamInformation Interface

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RVJ.IO {
/*

OVERVIEW

*/
public interface IStreamInformation : RV].IO.IStream {

#iregion Properties

/// <summary>

/// Type of data stream.

/// </summary>

RV].IO.StreamType Type { get; set; }

/// <summary>

/// Name of data stream (real or virtual).
/17 </summary>

String Name { get; set; }

/// <summary>

50

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

/// Size of data stream (32-bit). Can be zero or a
negative value.

/11 </summary>

Int32 SizeInBytes { get; set; }

/// <summary>

/// Larger size (64-bit) of a data stream, if
available. Can be zero or a negative value.

/17 </summary>

Int64 LargerSizeInBytes { get; set; }

/// <summary>

/// Date of creation of data stream.
/// </summary>

DateTime Creation { get; set; }

/// <summary>

/// Date of last update of data stream.
/17 </summary>

DateTime LastUpdate { get; set; }

/// <summary>

/// Indicates the type of operation supported by the
data stream at this moment.

/11 </summary>

RV].IO.StreamOperationType OperatingType { get; set; }

/// <summary>

/// Indicates if an operation of read can be realized.
/// </summary>

Boolean CanRead { get; }

/// <summary>
/// Indicates if an operation of write can be realized.

51

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

/// </summary>
Boolean CanWrite { get; }

#endregion

};
};

In Chapter 3, you will be working with details of the suggested
organization of source code files and implementation for the RV].1I0
custom library and some code in the C++/CLI projection.

In Chapter 4, you will learn about unmanaged data types and the
suggested use of them in your RVJ].IO custom library and the internal
support libraries.

Summary

The next two sections offer recommendations about the uses of
characteristics of .NET Core.

Dos

o Consider the use of the C++/CLI projection for the
development of .NET Core custom libraries. Yes, C++/CLI
supports the .NET Core as a target platform, which I will
be talking about in Chapter 3 and throughout the book.

e The .NET Core platform can be used to develop
aredesigned implementation of extraordinary
technologies, such as the System.IO.*.

» Ifaproject needs the functionalities of specific
.NET types, use the .NET Framework until all of the
functionalities your project requires are available in
.NET Core and .NET BCL/FCL Core.

52

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

The architecture for some implementations should

be organized with the purpose of encapsulating and
simplifying the use of resources available in .NET Core
data types in BCL assemblies and namespaces, via
managed and unmanaged APIs.

When developing custom libraries for .NET

Core, consider the use of internal libraries as an
architectural model for distribution and organization of
responsibilities.

You should encapsulate .NET Core data types in BCL/
FCL assemblies and namespaces to avoid exposing any
specific kind of data type directly through your .NET
Core custom libraries’ programming interfaces.

Be aware that the .NET Core runtime and the
infrastructure components of .NET Core as a whole are
the bases for all Microsoft .NET investments from now
on. This non-specific development platform is available
for Microsoft Windows, Linux distributions, and Apple
macOS platforms. This opens up new opportunities

for application developers, library developers, and
component developers.

Understand the general concepts, ideas, and organizational
distributions that apply to the .NET Core data types that
you are using in your custom libraries, such as the BCL
assemblies and the namespaces of System.IO.*.

When necessary, work with a higher-level API in
your code and consider APIs that abstract the details
of a more specific operating system and low-level
programming.

53

CHAPTER 2

Don’ts

54

OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

If you are planning to migrate a big application such as
an ERP or CRM to .NET Core, remember to establish
business goals for multiplatform opportunities and do
not focus only on technical aspects.

Use .NET Core 3.1 LTS to start any big migration to the
.NET Core platform.

Consider encapsulating specialized .NET Core data
types via custom data types to help

e protect the conceptual model of your custom
library.

o manage updates of .NET Core BCL System.IO.x
through your custom libraries.

o manage updates of .NET Core infrastructure
throughout your custom libraries’ APIs.

e update the management of your custom libraries’
APIs in future fixes, when necessary.

Ignore the use of condition compilation symbols such as
NETCOREAPP3_1, netstandard2_1, DEBUG, and others
for the creation of more powerful source code bases.

Encapsulate every member of every .NET Core data type
in System.I0.* namespaces, or other namespaces, in a
data type in a custom library "equivalent” data type.

Create a mapping between encapsulated .NET
Core data types one-by-one without a specific good
technical reason or good business goal.

CHAPTER 2 OVERVIEW OF ARCHITECTURE FOR IMPLEMENTATION

Start a project using a version earlier than .NET Core
3.1LTS.

Consider any big migration to .NET Core until all of the
functionalities that the project requires are available

in .NET Core and .NET BCL/FCL Core, especially
Microsoft Windows Forms and Microsoft WPE

Create “workarounds” for .NET type functionalities
when the objectives are not the use of low-level API.

Define goals based on superficial technical
observations about .NET Core. Do create pieces of
software based on the required functionalities of your
applications, libraries, and components, and then
make objective tests.

55

CHAPTER 3

Custom Data Types
for a Custom Library

In this chapter, you will learn how to implement custom data types using
.NET Core System.IO features and organization.

Purpose of Custom Data Types

As mentioned in a previous chapter, you should encapsulate .NET Core
data types in the BCL System.IO.: namespaces to avoid exposing any
specific kind of .NET Core data type in BCL System.IO.* directly through
your .NET Core RV].IO custom library programming interfaces.

The encapsulation of custom data types of the RV].IO custom library should
be organized around the .NET reference type and .NET value type concepts.

You saw as an example a .NET enumeration type thatis a .NET value
type, and you have common .NET Core enumerations that should be
encapsulated in custom data types of a custom library.

The System.Enum is a .NET reference type that is an abstract class
directly derived from the System.ValueType .NET reference type that
implements the System.IComparable, System.IConvertible, and System.
[Formattable interfaces, which are .NET reference types too.

Figure 3-1 shows an excerpt of the declaration of the System.Enum
.NET Core value type, as is in the Microsoft official documentation.

© Roger Villela 2020 57
R. Villela, Understanding System.IO for .NET Core 3,
https://doi.org/10.1007/978-1-4842-5872-9_3

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

c# Iy Copy

[System.Runtime.InteropServices.Comvisible(true)]
[System.Serializable]

public abstract class Enum : ValueType, IComparable, IConvertible,
IFormattable

Figure 3-1. Declaration of the the System.Enum .NET Core value
type as in the Microsoft official documentation

In the C# programming language, the keyword enum is used to declare
anew .NET reference type derived directly from the abstract System.Enum
.NET reference type. In fact, by doing this you are asking the C# compiler
to implement a derivation of System.Enum for you and implement all the
necessary infrastructure code.

The code in Listing 3-1 and Listing 3-2 encapsulates common
members of the System.I0.DriveType. Figure 3-2 shows the C# code, and
Figure 3-3 shows the MSIL for this enum implementation.

Listing 3-1. Encapsulating Common Members of System.
10.DriveType

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {

public enum DriveType : System.UInt32 {
Fixed = System.IO.DriveType.Fixed,

Ram = System.I0.DriveType.Ram,
Network = System.I0.DriveType.Network,
CDRom = System.IO.DriveType.CDRom,
Removable = System.I0.DriveType.Removable
};

};

58

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

B Bk ES Yew Bogt Buld Doty Amhitcher Tt Aoshoc Toch Extomiens Mindew Hep ScerchiCuled £ K @ - 8 X
Bt W P Debeg - amcPU e A @, Wl su A 5 1 veshee T ASMIN
=&
~| A0 DareType -] o Fined -1 §
=using-System; f —;
#if DEBUG A
using System.Diagnostics -
#endif 1

=namespace RV].I0{

| =--publicenum DriveType-: 5-,';tL-'"|.U|n132ﬂ

7%
8 | Fixed = System.l0.DriveType. Fixed,
9 Ram'=System.l0.DriveType.Ram,
10 - Network = System.10. DriveType. Network,
11 CDRom = System,|0.DriveType. CDRom,
12 Removable = System.|0.DriveType.Removable
13 i
14 |}
15]
N - S Ne e faurd LA be? Odd Cet? SKC fh:

Outpat Ervoe Lt Fiosd Syreied Rt

Figure 3-2. Showing RV].IO examples of data types encapsulating
Junctionalities of NET Core data types of the BCL System.IO namespace

7 C:\Projects\RVJ\Books\CLR\System.|O\ChO3\RVLIO\RVL.IO\obj\Debug\netcoreapp3.1\... ~ — O X

File View Help
g4 Ci\Projects\RY|Books\CLR|System, IOVChO3IRYD. IOWRYI.ION b\ Debuglnetcoreapp3, 1\RY.IO Il A
o
&P rRVLIO
&-EE RY1.IO.DriveType
. I .class enum public auto ansi sealed
b extends [System.Runtime]System.Enum
@ CDRom : public static literal valuetype RV1.IO.DriveType
- ® Fixed : public static literal valuetype RY1.10.DriveType
- @& Network : public static iteral valustype RV1.10.DriveType
-~ @ Ram : public static literal valustype RV1.IO.DriveType
& Removable : public static literal valuetype RV1.1I0.DriveType
“ 4y value__: public specialname rtspecialname uint32

Figure 3-3. MSIL shown in the ILDASM tool of .NET Core SDK

Listing 3-2 and Listing 3-3 show the MSIL for declaring and extending
from System.Enum the new custom .NET reference type RV].I0.DriveType.

59

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

Listing 3-2. The MSIL for RV].IO.DriveType, a New Derived Custom
.NET Reference Type from System.Enum

.class public auto ansi sealed RV].IO.DriveType
extends [System.Runtime]System.Enum

{
} // end of class RV].IO.DriveType

Listing 3-3 shows some enumeration members of System.IO.DriveType
encapsulated in a RV].I0.DriveType enumeration in MSIL. The members for
the values in the enum are declared as fields with public access and static.
Also, they are declared as literal values, indicating that the member is not
pointing to an instance of another object and the value is used as defined.

Another interesting aspect is that the compiler automatically creates
a special field named value, and it is the value you have assigned to the
enum when using operators such as = (assign operator).

Listing 3-3. Examples of Some Members of the RV].IO.DriveType

.class public auto ansi sealed RVJ.IO.DriveType
extends [System.Runtime]System.Enum

{

.field public static literal valuetype RV].IO.DriveType CDRom
uint32(0x00000005)

.field public static literal valuetype RV].IO.DriveType Fixed
uint32(0x00000003)

.field public static literal valuetype RV].IO.DriveType Network
= uint32(0x00000004)

.field public static literal valuetype RVJ.IO.DriveType Ram =
uint32(0x00000006)

60

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

.field public static literal valuetype RV].IO.DriveType
Removable = uint32(0x00000002)

.field public specialname rtspecialname uint32 value__
} // end of class RV].IO.DriveType

Itis important to remember that you must include a specific .NET Core
System.IO data type as part of the encapsulated custom data types for a custom
library by demand, and not just doing a map one-by-one without a specific good
technical reason or good business reason. Also, you do not have to encapsulate
every member of any namespaces in a data type in a custom library.

You must include custom data types that help the custom library
that you are developing and simplify the use of the .NET Core System.

I0 namespace data types encapsulated, or.NET data types of any other
assemblies and namespaces, when necessary for the custom library that
you are working on.

These are patterns of organization that you should follow for the
implementation of any enumeration, for example.

For the sample RV].IO custom library, you have more custom data
types for encapsulating the System.IO enums and you are following the
same pattern.

Listing 3-4 shows a derived enum that encapsulates values for the
members of the System.IO.FileAccess enum.

Listing 3-4. Encapsulating Members of the System.IO.FileAccess Enum

using System;

#if DEBUG

using System.Diagnostics;
#endif

61

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

namespace RV].IO {
public enum FileAccess : System.UInt32 {
Read = System.IO.FileAccess.Read,
Write = System.IO.FileAccess.Write,
ReadAndWrite = System.IO.FileAccess.ReadWrite
};
}s

Listing 3-5 shows the implementation of the RV].IO.FileMode .NET
Core enumeration that encapsulates some members of the System.
10.FileMode .NET Core enumeration.

Listing 3-5. System.lO.FileMode Members Encapsulated by RV]J.
10.FileMode

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {

public enum FileMode {
New = System.IO.FileMode.CreateNew,

Create = System.IO.FileMode.Create,
OpenOrCreate = System.IO.FileMode.
OpenOxCreate,
Open = System.IO.FileMode.Open,
Append = System.IO.FileMode.Append,
Truncate = System.I0.FileMode.Truncate

};

};

62

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

Viewing the MSIL for the RV].IO.FileAccess and for RV].IO.FileMode
enums, the pattern followed by the C# compiler is the same for the internal
structure of the derived custom .NET Core data types from System.Enum,

and this is shown in Figure 3-4 and Figure 3-5.

,5/ C:\Projects\RV)\Books\CLR\System.|O\ChO3\RVLIO\RV).IO\obj\Debug\netcoreapp3.\... —] X

File View Help

-4 C\Projects\RYIiBooks\CLR\System, IOVChO31RY).IOIRY].10\0bj\Debuginetcoreapp3. 11RY1.10.dIl A
P MANIFEST
=P RVLIO
@-EE RYLIO.DriveType
g-EE RYLIO FileAccess
I .class enum public auto ansi sealed
L P extends [System.Runtime]System.Enum
@& Read : public static literal valuetype RY1.10.FileAccess
@ Readandwrite : public static literal valuetype R¥).10.FileAccess
& Write : public static literal valuetype RV).10.FileAccess
% & value__ : public specialname rtspecialname uint32
&-EE RYLIO FilzAttibutes
@-EE RV).IO.FileMode
[RV1.10.IFileInformation
&I RV1.1O. IStream
& RV1.10.IStreamInformation
#-EE RY1.10.MatchCasing
#-EE RY1IO.MatchType
&-EE RY).10.OperationDirection
@-EE RY1.IO.PositionInStream
@-EE RY).10.SearchOptionsForDirectories
B Rv2.10.StreamInformation

>|€

.assembly RY1.10

Figure 3-4. MSIL for the RV].1O.FileAccess custom .NET Core data
type derived from System.Enum

63

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

f/ C:\Projects\RVI\Books\CLR\System.|O\Ch03\RVL.IO\RV).IO\obj\Debug\netcoreapp3.\e.. — [} X
File View Help

£y CiProjects\RYI\Books|\CLRISystem. IOVChO3IRY.IORY). IO cbj\Debuginetcoreapp3. 1\RY1.10.dI A
P MANIFEST
El ' RY1.IO
@ EE RY1IO.DriveType
=-EF RY).IO.FileAccess
&-E= RY1.IO.FileAttibutes
=-EE RYLIO.FileMode
-~ class enum public auto ansi sealed
-~ extends [System.Runtime]System.Enum
& Append : public static likeral valuetype RY.I0.FileMade
@ Create : public static literal valuetype RY),10.FileMode
- @ Mew : public static literal valuetype RY1.10.FileMode
@ Open : public static literal valuetype RY),10.FileMode
@& OpenOrCreate : public static liceral valuetype RV).10.FileMode
-~ @& Truncate : public static literal valuetype RY).10.FileMode
VA value_ : public specialname rtspecialname uint32
£ E RY1.10. IFilzInformation
& RY1IO.I5tream
@- [RY1.IO.IStreamInformation
& EE RY1.10.MatchCasing
&-E= RY1.I0.MatchType
&-EE RY1.10,OperationDirection
| = BE Rl TN PrsiinnInGhrean

> | £

\assembly RYJ,IO
{

Figure 3-5. MSIL for the RV].IO.FileMode custom .NET Core data
type derived from System.Enum

Listing 3-6 and Listing 3-7 show the MSIL for the implementation of
RV].IO.FileAccess and RV].IO.FileMode.

Listing 3-6. MSIL for the Implementation of the RV].IO.FileAccess
Custom Data Type Derived from System.Enum

.class public auto ansi sealed RVJ.IO.FileAccess
extends [System.Runtime]System.Enum

{
.field public static literal valuetype RV].IO.FileAccess Read =

uint32(0x00000001)

.field public static literal valuetype RV].IO.FileAccess
ReadAndWrite = uint32(0x00000003)

64

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

.field public static literal valuetype RV].IO.FileAccess
Write = uint32(0x00000002)

.field public specialname rtspecialname uint32 value__

} // end of class RV].IO.FileAccess

Listing 3-7. MSIL for the Implementation of the RV].I0.FileMode
Custom Data Type Derived from System.Enum

.class public auto ansi sealed RV].IO.FileMode
extends [System.Runtime]System.Enum

{

.field public static literal valuetype RV].IO.FileMode
Append = uint32(0x00000006)

.field public static literal valuetype RV].IO.FileMode
Create = uint32(0x00000002)

.field public static literal valuetype RV].IO.FileMode
New = uint32(0x00000001)

.field public static literal valuetype RV].IO.FileMode
Open = uint32(0x00000003)

.field public static literal valuetype RV].IO.FileMode
OpenOrCreate = uint32(0x00000004)

.field public static literal valuetype RV].IO.FileMode
Truncate = uint32(0x00000005)

.field public specialname rtspecialname uint32 value__

} // end of class RVJ.IO.FileMode

You can check RV].IO the custom library project source code and see
that there are more custom enumerations that encapsulate .NET Core
System.IO enumerations and the same model for implementation is used.

65

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

Working with Custom Data Types
for Stream Data Types

When you are developing a custom library or a code base that should be
used as starting point for more advanced software libraries and source code
bases, you must be aware of certain details of your projects and source code.

As said before, when working with data streams, one behavior that
is necessary is to get information about the data stream. But even with a
platform that tries to abstract the details of the target operating system,
as .NET does, you'll always need to avoid certain .NET types and their
features when writing code that should be operating system agnostic.

To achieve this type of portability of source code and use of the .NET
Core APIs, it is important to avoid creating .NET reference types that inherit
directly or indirectly from some kind of data stream types, such as System.
10.BinaryReader or System.IO.BinaryWriter, because you will need to override
complex and sometimes non-agnostic operating system source code.

It will be much more practical to use ideas and concepts for custom
library actions (behaviors and events) instead of trying to replicate
member-by-member something that is working and can be encapsulated.

Using the concepts and flexibility of encapsulating the useful .NET
Core data types, you will be extending (not in the formal concept of OOP,
but you could) and aggregating the features of the .NET Core custom data
types of the specific new context of business or science, for example.

Figure 3-6 and Figure 3-7 show, for example, that the System.IO.File
cannot be used as the base .NET reference type (class) because is declared
with the static C# modifier in the class declaration.

66

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

If you are trying to use OOP as the only approach for designing a .NET
Core custom data type for a custom library, you have a problem with the
System.IO.File because you cannot inherit from it.

c# ™y Copy

[System.Runtime.InteropServices.Comvisible(true)]
public static class File

Inheritance Object - File

Figure 3-6. System.lO.File cannot be used as the base .NET reference
type (class) because it is declared with the static C# modifier in the
class declaration

~—publicclass'MyFile : System.lO.File {
%3 class RVLIO.MyfFile

- } ‘MyFile": cannot derive from static class 'File'

Figure 3-7. System.IO.File cannot be used as the base .NET reference
type (class)

The System.IO.FileInfo is another important .NET reference type of
System.IO data types that you will be using soon in your RV].IO custom
library, but you cannot derive from it because the System.IO.FileInfo is
declared as sealed.

Figure 3-8 and Figure 3-9 show a scenario similar to the System.IO.File
.NET reference type, but this time because of sealed C# keyword that
indicates that you cannot inherit from a .NET reference type declared with
this keyword.

67

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

cs & Copy

[System.Runtime.InteropServices.Comvisible(true)]
[System.Serializable]
public sealed class FileInfo : System.IO.FileSystemInfo

Figure 3-8. System.IO.Filelnfo cannot be used as the base .NET
reference type (class) because is declared with the sealed C# modifier
in the class declaration

{} namespace System

} 'MyFilelnfo': cannot derive from sealed type 'Fileinfo'

Figure 3-9. System.IO.Filelnfo cannot be used as the base .NET
reference type (class)

The .NET reference type interface is another concept that should be
considered as a fundamental element in the design of custom data types.
Note that .NET reference type interfaces are used in source code files
IStreamInformation.cs and IStream.cs (Listing 3-8 and Listing 3-9).

The .NET Core data types in System.IO.* namespaces do the
management of the input and output of operations via some type of data
stream, and your RV].IO will encapsulate specialized behaviors of .NET
Core data types available in the BCL System.IO namespace.

Listing 3-8. Suggestion with a Sample Source Code for the .NET
Core Custom Data Type IStream Public Interface

using System;

#if DEBUG

using System.Diagnostics;
#endif

68

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY
namespace RV].IO {
public interface IStream {

#iregion Behaviors

/// <summary>

/// Tries to open the data stream.

/// </summary>

Boolean Open();

/// <summary>

/// Verifies if the data stream was created.
/// </summary>

Boolean Exists();

/// <summary>

/// Tries to read some portion of the data stream.

/// Returns the read portion of data stream in System.
Byte[] array.

/17 </summary>

Byte[] Read(OperationDirection operationDirection,

UInt32 numberOfBytes, Boolean asyncOperation);

/// <summary>

/// Tries to write to the data stream.
/11 </summary>

Boolean Write();

/// <summary>

/// Tries to close the data stream.
/// </summary>

Boolean Close();

#endregion

#region Properties

69

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

/// <summary>

/// Base data stream object instance that was opened
for manipulation.

/171 </summary>

System.I0.Stream DataStream { get; set; }

#endregion

};
};

Listing 3-9. Suggestion with a Sample Source Code for the .NET
Core Custom Data Type IStreamInformation Public Interface

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {

public interface IStreamInformation : RV].IO.IStream {
#iregion Properties

/// <summary>

/// Type of data stream.

/171 </summary>

RV].IO.StreamType Type { get; set; }

/// <summary>

/// Name of data stream (real or virtual).
/// </summary>

String Name { get; set; }

/// <summary>

70

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

/// Size of data stream (32-bit). Can be zero or a
negative value.

/171 </summary>

Int32 SizeInBytes { get; set; }

/// <summary>
/// Larger size (64-bit) of a data stream, if available.
Can be zero or a negative value.

/// </summary>

Int64 LargerSizeInBytes { get; set; }
/// <summary>

/// Date of creation of data stream.
/17 </summary>

DateTime Creation { get; set; }

/// <summary>

/// Date of last update of data stream.
/// </summary>

DateTime LastUpdate { get; set; }

/// <summary>

/// Indicates the type of operation supported by the
data stream at this moment.

/// </summary>

RV].I0.StreamOperationType OperatingType { get; set; }

/// <summary>

/// Indicates if an operation of read can be realized.
/// </summary>

Boolean CanRead { get; }

/// <summary>
/// Indicates if an operation of write can be realized.

71

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

/// </summary>
Boolean CanWrite { get; }
#endregion

};
};

Based on this concept of stream information, you can create, for
example, a more specialized custom data type for getting information from
a file, as shown in Listing 3-10 with the IFileInformation.cs source code file
and RV].IO.IFileInformation that is derived from RV].IO.IStreamInformation.

Listing 3-10. Proposed More Specialized Custom .NET Core
Data Type Interface RV].IO.IFileInformation Derived from RV].
10.IStreamInformation

using System;

#if DEBUG

using System.Diagnostics;
#endif

namespace RV].IO {
public interface IFileInformation : RV].IO.IStreamInformation {

};
};

For creating and implementing custom data types that are cross-
platform and agnostic in terms of certain operating system functionalities,
you should use more abstract ideas and concepts, based on the libraries
you are using as the foundation for your custom library or libraries, such as
BCL System.IO, for example.

72

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

In BCL System.IO, you can see that the concepts of enumeration, data
stream, and information are three examples that you can use as the base
concepts for your custom library’s custom data types and behaviors.

Using C++/CLI Projection and .NET Core

When you are using .NET Core 3.1 you can use the C++/CLI projection for
writing code for the .NET Core platform. The following examples show the
new configurations supported by Microsoft C++ tools for developing code
for the .NET Core.

You can read the following two blog posts about .NET Core 3.x and C++/
CLI projection on the Microsoft official C++ Team Blog. At the time of this
writing and as explained in these Microsoft official blog posts, the C++/CLI
projection is available only for the Microsoft Windows operating system, for
.NET Core and .NET Framework: “The Future of C++/CLI and .NET Core 3”
(from September, 2019 at https://devblogs.microsoft.com/cppblog/the-
future-of-cpp-cli-and-dotnet-core-3/) and “An Update on C++/CLI and
.NET Core” (from November, 2019 at https://devblogs.microsoft.com/
cppblog/an-update-on-cpp-cli-and-dotnet-core/).

Figure 3-10 shows the template CLR Class Library (.NET Core) for
Microsoft Visual C++ used for the sample project, which is a.NET Core library.

73

https://devblogs.microsoft.com/cppblog/the-future-of-cpp-cli-and-dotnet-core-3/
https://devblogs.microsoft.com/cppblog/the-future-of-cpp-cli-and-dotnet-core-3/
https://devblogs.microsoft.com/cppblog/an-update-on-cpp-cli-and-dotnet-core/
https://devblogs.microsoft.com/cppblog/an-update-on-cpp-cli-and-dotnet-core/

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

Add a new project

Cloas a8
Hecent project templates Ca - g R
1 Empty Prieet e S CLA Lty Preject LNET Cove)
i BT . st st e s h T G, oty bt e ST and o ok
P Chos Libeary CHET o o oo Wreeow Usary
[s CUR Ouns Lbeary (MT vl
e . =
e S C i o Roumry twgeting te NET Cose. Provices tarpessbity between HET and C=» code.
8 Wiadows Farme App (LT Framawadt] & Goo | Wrcom tacey
; Cork g 1CoaWinST)
& Cormhe Aoy LT Fromerrodtd L L] Aottt for & Coo el Universal Windsers AR s Srectly
e wremn une
B Comcle App LNIT Cored 3
B et
P Doparmic.Link Libuary @OLL} Con A posiect for creatng 2 Commanc-bre apphcatian that an mn on NET Com en Mindons Linas and MacCs.
@ Unm eSS Wnooe Consce
@ Shared ams Pregaet Can
ﬂ Conacle App (AT Cond
W Cansoledon e ot fx cresting o comeman-ne sppbcation that . man o AET Care o Windona, Linar and Macts.
Visbak Wndem Lea radd Gonoe
P Cless Library CHET Framoewani) o
i ity
121 bk A el Wi - 40 s A potject Bt conmiina MSTes ust st tht can run 5 JET Core e Wi, i and MacOS

O Umm eacDS Whsem Tel

Figure 3-10. The CLR Class Library (.NET Core) template for
Microsoft Visual C++

Figure 3-11 shows the configurations for the folders of your .NET Core
Class Library written in C++/CLI projection.

Configure your new project

CLR Class Library {NET Core)} ce= wroom Louey

Praject pame

RVLD

Location

CitPajects| T Boaka CUR System. 0 CHEDENINOPCLI

Figure 3-11. The configurations for the folders of your .NET Core
Class Library written in the C++/CLI projection

74

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

After the project is created, open the project properties as shown in
Figure 3-12 and look at the Advanced page properties.

In the C++/CLI Properties section is the Common Language
Runtime Support property, as shown in Figure 3-12. This property has
the compilation option /clr with the value netcore, which is new for the
Microsoft C++/CLI projection.

In the Advanced page property shown in Figure 3-12, you can see the
property .NET Core Target Framework which you must set as nefcoreapp3.1
for the minimum value of your project.

RVJ.IO Property Pages ? X
Configuration: | Active(Debug) ~ Platform: | Active(Win32) ~ Cenfiguration Manager...
4 Configuration Properties | [~ Advanced Properties
General Target File Extension il
Advanced Extensions to Delete on Clean *.cdf;".cache:*.obj;".obj.enc;".ilk;".ipdb; *.iohj;" resources;" tib;
Debugging Build Log File S(IntDinS(MsBuildProjectName).log
VC++ Directories Preferred Build Tool Architecture Default
> Ehe Use Debug Libraries Yes
PgLinker Enable Unity (JUMBO) Build No
b Manifest Teol N
b Ressaircss Use of MFC Use S!srjdsm’ Windows Libraries
b XML Document Generator Character Set o Use Unicode Cllaracter_s.el)
S [Whele Program Optimization MNe Whole Program Optimization
b Build Events MSVC Toolset Version Default
b Custom Build Step ¥ C++/CLl Properties
b Code Analysis -NET Core Runtime Support [/clr:netcorel| M
JNET Core Target Framewerk netcoreapp3. 1
Commen Language Runtime Support
Specifies whether this i pports the C L Runtime. This is incompatible with
< > | | some other settings, e.g. runtime checks. See help for /cir family of C++ compiler switches for full list ...
Cancel Apply

Figure 3-12. Project properties on the Advanced properties page

Figure 3-13 shows another properties page, C/C++, where you have the
Common Language Runtime Support property configured with the value
NetCore, which is also a new value supported for the C++/CLI projection
by the Microsoft C++ compiler option /clr.

75

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

RVJ.IO Property Pages ? X
Configuration: | Active(Debug) ~ Platform: | Active(Win32) ~ Cenfiguration Manager...
4 Configuration Properties Additional Include Directories

General Additional 2using Directories

Advanced Debug Information Format Program Database (/Zi)

Debug ging Support Just My Code Debugging Ne

VC++ Directories Common Language RunTime Support [E5e1S v
b C/C++ C Windrmre Brsrdirna B .
2 :'n ke; + Tool Suppress Startup Banner Yes (/neloge)
il Warning Level Level3 (/W3)
p LEEIES Treat Warnings As Errers No [fWX-)
I XML Document Generator ‘:a . : g
I Browse Information _3"‘"\5 .Versnon . .
b Build Events Diagnestics Format Column Infe (/dizgnostics:column)
b Custom Build Step SDL checks
p Code Analysis Multi-precessor Compilation

Enable Address Sanitizer (Experimental) Ne
Commeon Language RunTime Support
Use the .NET runtime service. This switch is incompatible with seme other switches; see the
< > | | documentation on the /cIr family of switches for details.

Figure 3-13. The Common Language Runtime Support property
configured with the value NetCore

I'will be talking more about code using the C++/CLI projection in
Chapter 4 and the book as whole, but for now, you can look at Listing 3-11
for an example in the C++/CLI projection of the same RV].IO custom library
RVJ::10::DriveType enum custom data type reference type written for C#.
The full source code is available in folder <install folder>\Projects\RVI\
Books\CLR\System.I0O\Cho3\.

Listing 3-11. Example of RV]::10::DriveType Enum Implemented in
C++/CLI Projection for the .NET Core Platform

#pragma once

#pragma region Header files
#pragma endregion

76

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

#ipragma region Assembly Namespaces
using namespace System;

using namespace System::I0;
#pragma endregion

namespace RVJ::I0 {
public enum class DriveType : UInt32 {
Fixed = (UInt32) System::IO0::DriveType::Fixed,
Ram = (UInt32) System::IO0::DriveType::Ram,
Network = (UInt32) System::I0::DriveType::
Network,
CDRom = (UInt32) System::I0::DriveType::CDRom,
Removable = (UInt32) System::IO0::DriveType::
Removable
};
};

Summary

The next two sections cover recommendations about the uses of
characteristics of .NET Core.

Dos

e Youshould encapsulate .NET Core data types in the
BCL System.IO.* namespaces to avoid exposing any
specific kind of .NET Core data type in BCL System.IO.x
directly through your .NET Core RV].IO custom library
programming interfaces.

77

CHAPTER 3 CUSTOM DATA TYPES FOR A CUSTOM LIBRARY

o Always check the Microsoft official documentation
website at https://docs.microsoft.com/en-us/
dotnet/ to learn about the model used for the
organization of the .NET type.

o Always check the Microsoft official documentation
to learn about the behaviors of the .NET type that the
custom library is encapsulating.

e Avoid complex hierarchy of object models. Use
interfaces as the starting point for abstracting the
concepts and ideas.

o Identify the common concepts and organize the
custom data types around them.

Don’ts

o Ignore the Microsoft official documentation as
the source for learning about the concepts and
functionalities available for the .NET types.

o Tryto create a complex object model hierarchy just
because is technically possible.

o Use alot of abstract concepts. Instead, learn with
the target contexts, such as Input/Output/Network,
and create a few groups of concepts and then expand
gradually using the demanded custom data types as
one of the reasons for the expansions.

78

https://docs.microsoft.com/en-us/dotnet/
https://docs.microsoft.com/en-us/dotnet/

CHAPTER 4

Custom Collections
for a Custom Library

In this chapter, you will learn the fundamental aspects of implementing
custom collections using features and the organization required for any
.NET platform library implementations.

Overview

When you work with collections, you follow patterns and standards, such
as the behaviors you use to iterate through the instances of data types
stored in an instance of a collection data type, non-generic-based or
generic-based collection data type.

Any .NET library implementation that is using collections is
implementing patterns and following standards, which includes the
required details for the .NET platform itself.

For example, every collection in .NET libraries has a common set
of base types that are required to be implemented and be used as a
basis, such as the .NET interface type System.Collections.ICollection
non-generic base and .NET interface type System.Collections.Generic.
ICollection<T> generic base.

In this chapter, I will use the .NET class type System.Collections.
ArrayList non-generic base to explain the required .NET interface types for

© Roger Villela 2020 79
R. Villela, Understanding System.IO for .NET Core 3,
https://doi.org/10.1007/978-1-4842-5872-9_4

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

non-generic-based collections and the .NET class type System.Collections.
Generic.List<T> generic base to explain the required .NET interface types
for generic-based collections.

These explanations and concepts are valid for any collection
following the .NET standards for the implementation of .NET libraries.
These explanations are also valid for .NET Core and .NET Framework
implementations and the respective libraries, BCL or FCL, or any others
for NET implementations.

The next chapters will require this kind of knowledge because I
will be talking about a custom collection for the System.IO data types,
and all of the collections follow these standards of the .NET platform
implementations.

Fundamental Set of .NET Data Types
for Collections in BCL

As mentioned in previous chapters, you should encapsulate .NET Core
data types in BCL System.IO.: namespaces to avoid exposing any specific
kind of .NET Core data type in BCL System.IO.* directly through your .NET
Core RVJ.IO custom library programming interfaces.

Non-Generic—-Based Custom Collections

In the .NET Core BCL and .NET Framework BCL there are two base data
types that should be implemented and supported, directly or indirectly, by
any collection data type for the .NET platform implementations.

For all .NET non-generic-based collections, shown in Figure 4-1,
we have the .NET interface type System.Collections.ICollection as the
base data type, and it is available in the assemblies System.Runtime.dll,
mscorlib.dll, and netstandard.dll.

80

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

System.Collections.|Collection

Figure 4-1. The .NET interface type System.Collections.ICollection
non-generic base is the base of all .NET non-generic-based collections

This means that the .NET interface type System.Collections.ICollection
non-generic base is the base for all .NET non-generic-based data types
available in the System.Collections namespace (and any others) that
implement the concepts and functionalities of .NET non-generic-based
collections.

In general, when you are creating a custom set of collections with
a commercial purpose, a better starting pointing derives (creates a
specialization) from a .NET class type collection, such as System.
Collections.ArrayList non-generic base or System.Collections.Generic.
List<T> generic base, for example.

However, if you are considering implementing a custom collection
from the ground up, you must base your custom collections on a set of
.NET interface types that are required to work with .NET environments. For
example, when working with the for. . .each pattern in .NET compatible
programming languages, the compiler infrastructure is expecting that your
custom collection has implemented the required .NET interface types for
collections.

81

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

The .NET interface type System.Collections.ICollection is one of those
base collections types that are required.

Talking specifically about the .NET interface type System.Collections.
ICollection as an example, you should be aware that the following
members and respective behaviors are required to be implemented:

e Properties
e Count

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
count?view=netcore-3.1#System
Collections_ICollection_Count

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
count?view=netframework-4.8#System_
Collections ICollection Count

e IsSynchronized

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
issynchronized?view=netcore-3.1#System_
Collections_ICollection_IsSynchronized

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.issyn
chronized?view=netframework-4.8

e SyncRoot

o https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
syncroot?view=netcore-3.1#System_
Collections ICollection SyncRoot

82

https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netcore-3.1#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netcore-3.1#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netcore-3.1#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netcore-3.1#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netframework-4.8#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netframework-4.8#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netframework-4.8#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.count?view=netframework-4.8#System_Collections_ICollection_Count
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netcore-3.1#System_Collections_ICollection_IsSynchronized
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netcore-3.1#System_Collections_ICollection_IsSynchronized
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netcore-3.1#System_Collections_ICollection_IsSynchronized
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netcore-3.1#System_Collections_ICollection_IsSynchronized
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.issynchronized?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netcore-3.1#System_Collections_ICollection_SyncRoot
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netcore-3.1#System_Collections_ICollection_SyncRoot
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netcore-3.1#System_Collections_ICollection_SyncRoot
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netcore-3.1#System_Collections_ICollection_SyncRoot

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
syncroot?view=netframework-4.8

e Methods
» CopyTo()

o https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
copyto?view=netcore-3.1#System
Collections ICollection CopyTo System
Array System Int32_

o https://docs.microsoft.com/en-us/dotnet/
api/system.collections.icollection.
copyto?view=netframework-4.8

o System.Collections.IEnumerable.
GetEnumerator() (inherited from System.
Collections.IEnumerable)

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerable.
getenumerator?view=netcore-3.1#System_
Collections_IEnumerable GetEnumerator

o https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerable.geten
umerator?view=netframework-4.8

Reading about these members, in particular about the methods, will
give you information about the method with GetEnumerator() as the
name; it is part of another .NET interface type, the System.Collections.
IEnumerable.

83

https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.syncroot?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netcore-3.1#System_Collections_ICollection_CopyTo_System_Array_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netcore-3.1#System_Collections_ICollection_CopyTo_System_Array_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netcore-3.1#System_Collections_ICollection_CopyTo_System_Array_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netcore-3.1#System_Collections_ICollection_CopyTo_System_Array_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netcore-3.1#System_Collections_ICollection_CopyTo_System_Array_System_Int32_
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection.copyto?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netcore-3.1#System_Collections_IEnumerable_GetEnumerator
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netcore-3.1#System_Collections_IEnumerable_GetEnumerator
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netcore-3.1#System_Collections_IEnumerable_GetEnumerator
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netcore-3.1#System_Collections_IEnumerable_GetEnumerator
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator?view=netframework-4.8

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

The point here is a common aspect for the .NET types: a set of NET
interface types are related based on inheritance between contracts. That
is, instead of a .NET class type declared with multiple .NET interface types
at the class level, the .NET class type is declared with few .NET interface
types, but they are composed of a succession of .NET interface types that,
in the final, creates the full expected collection type with the required
behaviors and concepts available.

Figure 4-2 shows the .NET collections available in the System.
Collections namespace (or in any others) using the .NET API Browser tool
for .NET Core libraries and .NET Framework libraries (see https://docs.
microsoft.com/en-us/dotnet/api/?view=netcore-3.1).

B | BE | B¥ NETAP beower| Miomsaht Do % | 5 ’ :

&« O @ B hupsiidocs.mirosofloomyen-us/dotney/apl Tviewsnetcore-3.1 a4 o @ a A& -

.NEI AFI browse

Welcome to the NET APl browser - your one-stop shop for all NET-based APls from Microsoft. Start searching

far any managed APls by typing in the box below. You can learn more about the API browser in our blog post, If
you have any feedback, create a new issue in the MicrosoftDocs/feedback repository gn GitHub.
-MET Core 3.1~
Product Version
Al APIs 3 34
NET Core 30
.NETC NET Framework 22
NET Platform Extensions 21
Name
JMET Standard 20
Accessibilit |wp 11 se part of a managed wiapper for the Component
HamarinAndroid 10
Micresoftd XamariniOs npilation and code generation using the CF language.
. XamarinMac B . .
Microsoft.C 1at support interoperation between Dynamic Language

+ Active Directory Federation Services

an/datnatiops T

Figure 4-2. Using the .NET API Browser tool to inspect all the NET
APIs available for and based on .NET Core libraries

For example, the .NET class type System.Collections.ArrayList non-
generic-base is a collection that implements the .NET interface type
System.Collections.ICollection inherited through the .NET interface
type System.Collections.IList non-generic-base, which extends the .NET
interface type System.Collections.ICollection.

84

https://docs.microsoft.com/en-us/dotnet/api/?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/?view=netcore-3.1

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

Listing 4-1 and Figure 4-3 are based on Microsoft official
documentation and show the C# code with a declaration of the .NET
interface type System.Collections.IList non-generic base.

Listing 4-1. C# Code with the Declaration of the System.Collections.
IList That Extends the System.Collections.ICollection

[System.Runtime.InteropServices.ComVisible(true)]
public interface IList : System.Collections.ICollection

Cc#

[System.Runtime.InteropServices.Comvisible(true)]
public interface IList : System.Collections.ICollection

Figure 4-3. The .NET interface type System.Collections.IList extends
the .NET interface type System.Collections.ICollection, and both are
implemented by the .NET class type System.Collections.ArrayList non-
generic-based collection

Figure 4-4 shows the sequence with a composition to help you
understand the relationship between the .NET class type System.
Collections.ArrayList, used as an example, and the .NET interface types
that it is based on.

85

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

System.Collections.|Collection

has the
System.Collections.IEnumerable
as the base interface.

System.Collections.|Enumerable

System.Collections.|List
has the

System.Collections.ArrayList has the

System.Collections.IList as the ; ~ _ . _ .
P hiterfacel System.Collections.ICollection as

the base interface.

Figure 4-4. System.Collections.ArrayList implements the NET
interface types System.Collections.IList, System.Collections.
ICollection, and System.Collections.IEnumerable

Generic-Based Custom Collections

All collections that are based on .NET generic technology have the .NET
interface type System.Collections.Generic.ICollection<T> generic base as
the base type (see Figure 4-5), and it is available in the assemblies System.
Runtime.dll, mscorlib.dl]l, and netstandard.dll.

86

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

System.Collections.Generic.ICollection<T>

Figure 4-5. The .NET interface type System.Collections.Generic.
ICollection<T> generic base is the base of all .NET generic-based
collections

This means that the .NET interface type System.Collections.Generic.
ICollection<T> generic base is the base interface for all .NET generic-
based data types available in the System.Collections.Generic namespace
that implement the concepts and functionalities of .NET generic-based
collections.

For example, the .NET class type System.Collections.Generic.List<T>
generic base is a collection that implements the .NET interface type
System.Collections.Generic.ICollection<T> through the .NET interface
type System.Collections.Generic.IList<T> generic base that extends the
.NET interface type System.Collections.Generic.ICollection<T>.

87

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

Figure 4-6, based on Microsoft official documentation, shows the
declaration of .NET class type System.Collections.Generic.List<T> with the
fundamental .NET interface types that are implemented by the .NET
class type.

B® | B% | BT taeeT> CossBomtemlobecion % [4 = X
€ 2 0O @ A hops/docsmirossfucomien-usidoney/api/system collections.genericis-1 Tdewsnetcore-31 (6 & & 0 a = A& -
. i
Versi Is thi:
ity List<T> Class it
NET Core 3.1 A helpful?
Mamespace: System.Collections.Generic
D Search Assemblies: Systam Collactions.dil, mscorlibdll, netstandacd di < Ve
s 57 No
List<T> Represents a strongly typed list of objects that can be accessed by index, In this
n thi
Provides methods to search, sort, and manipulate lists. ;
Canstructars article
* Properties o B Copy | Definition
* Methods Examples

* Explictt Interface
Implementations
» Queue<T> Enumerator

* Queue<Ts

* SortedDictionary <THey. TVal.

¥ SortedDictionany < THey, Tval.

-Collections.Generic.ICollection<Ts,
uperable<ts,
)
adonlycellectioneTs,
adonlyList<Ts,

Remarks

Methods

Explicit
Interface
Irnplementati
ons

Enumerator Type Parameters Extivdion
L Dowmioad PDF T Methoss

The type of elements in the list,

Figure 4-6. .NET class type System.Collections.Generic.List<T>
declaration with the fundamental set of .NET interface types shown

In the Microsoft official documentation, the text explicitly shows the
.NET interface types on which the .NET class type System.Collections.
Generic.List<T> is based. The purpose is to help the readers of the
documentation to quickly find the relationship between the .NET class
type and the fundamental set of base .NET interface types implemented by
the .NET class type .NET System.Collections.Generic.List<T>, in this case.

Figure 4-7 shows an excerpt of Microsoft official source code for the
.NET Framework Class Library 4.8 .NET class type System.Collections.
Generic.List<T> implementation.

88

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

) rumemefscimenaleicereSizt: X | B bt s | B Mewtst x|+ - 8 x

-] a A& -

= O R 8 hups/referencesourcemicrosoiteom #mse

= -
*a IDictionany«THey, Tvalue:
o lEnumerable«Ts N B
" 2 " =
- 9 I the capacity
- @ Ji of the List is autosati d by reallocating the §
Sl 5 £ internal array. h
- 32 "
.o 33 et 2111
s
- KegValuePair<Trey, Tvakue> Ipl_blic cless [EEReT> : T3, Systes.Collections.IList, IReadOnlylisteTs
% ListeTs . " private const int _defeultCapacity = 4;
% LongEnum EqualityComparer<Ts
private T[] _items;
[ContractPublicPrapar Count®)]
- nanalusCollectionDebughi
*u Mscorlib_KeyedCollectionDebugView, T=
% MullableComparer<Ts
% MullableEqualityComparer<Ts static readoaly T[] _erptyirray = new T[0];
*» OjectComparer<T»
 OtjectéquaiityComparer <T> [Gt p M TR IR Aty e et I e ey

domized ObjectEqualityComparer
i ingtqualityComparer
e »

Figure 4-7. .NET class type System.Collections.Generic.List<T>
is declared as implementing System.Collections.Generic.IList<T>,
System.Collections.IList, and System.Collections.Generic.
IReadOnlyList<T>. (Microsoft Official Reference Source)

Figure 4-8 shows an excerpt of the Microsoft official NET Core
Source Browser tool source code repository for the .NET Core Base
Class Library 3.1 .NET class type System.Collections.Generic.List<T>
implementation.

89

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B e % | B wmyiote o | B3 Mewk x|+ = 8 X

« O @ B hopsyscurcedotnet/ssy

Al ©. Systen.Collections. ArrayList

*o IRzacOnlyLisn<T>

* KeyhlorFoundException 12 tl
* KeyvaluePair 1 L ; T
n i b 14 t : ¥ =
7 KeyvalueRair<Trey, Tvalues
b o -’NT e 15 J# of the List iz autosatically increased as required by resllocating the
P seTs I{ internal array. 4
*r MonRandomizedStringEqualinCemparer " 41
s MullableEqualityComparer <T» 18 [DebuggerTypeProny (typeof (ICol lectionDebugVients))]
*r ObjecriqualinyComparer<T> 1% [splay(“Count = {Count}™)]
* ReferencedqualityComparer 20 (s |
L yaluelistgullder<Ts i1 [ypakor Fron(“escorlib, Versions4.0.9.9, llulh.ra neutral, PublickeyTokensb?
22 u ss [T ¢ tLise<Ty, IList, IReadOnlylist<T>
® 1} ObjectModel - Fis e T
b % Arraylist 24 private const int DefaultCapacity = &3
*: Comparer 25
*, CompatibleComparer 26 irternal T[] _items; // Do rot rensms (birary serisl)
= DictionaryEntry a7 interral int _sire; // Do not rensne (binary seria on)
b % EmptyReadOnlyDictionandnterna 28 private int 1 ; /f Do not renane (binary serialization)
. H‘“h"'f!r"'s 10 #pragrs werming dizable CAIS2S [/ avoid the extra generic instantistion for Array.Emp
- Hasr!:a:.e 31 private static readonly T[] s_emptydreay = new T[0];
=0 [Collection 32 #pragra warning restore CA182S
o [Comparer EH!
o |Dictionary EX| {f Comstructs a List, The list is initially eeply and has a capacity

=0 IDictionaryErumerator
=0 IHashCodeProvider
0 IstructuraiComparable
=0 IStructuralEquatable

Figure 4-8. .NET class type System.Collections.Generic.List<T>

is declared as implementing System.Collections.Generic.IList<T>,
System.Collections.IList, and System.Collections.Generic.
IReadOnlyList<T>. (Microsoft Official .NET Core Source Browser)

For the set of .NET interface types shown on the page of the Microsoft
official documentation, the following quick explanations are helpful:

o The .NET interface type System.Collections.Generic.
IList<T> generic base is the base interface for some of the
behaviors that characterize the implementation of a list
as a dynamic, resizable container-based collection and
has the .NET interface type System.Collections.Generic.
ICollection<T> generic base as the base .NET interface type.

o The .NET interface type System.Collections.Generic.
ICollection<T> generic base is shown because it is
the base .NET interface type for all collections for the
.NET platform libraries. As mentioned, if you want to
implement a custom .NET collection, it’s important to
learn about these foundational data types for the model
used by .NET platform for the libraries.

90

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

o The .NET interface type System.Collections.Generic.
IEnumerable<T> generic base is shown because it
is required by collections with the support for the
behaviors required for iteration over the instances of
data types stored in the instance of a collection. Also,
because the .NET interface type System.Collections.
Generic.ICollection<T> has as the base type the
.NET interface type System.Collections.Generic.
IEnumerable<T>.

e You can have a read-only collection or a read/write
collection, and the .NET interface type System.
Collections.Generic.IReadOnlyList<T> aggregates the
required concepts and behaviors of the read-only to
aread/write collection type. The .NET interface type
System.Collections.Generic.IReadOnlyList<T> generic
base has as the base the .NET interface type System.
Collections.Generic.IReadOnlyCollection<T>, that
has as the base the .NET interface type the System.
Collections.Generic.IEnumerable<T> generic base.

Listing 4-2 and Figure 4-9, based on Microsoft official documentation,
show the C# code with a declaration for the .NET interface type System.
Collections.Generic.IList<T> generic base.

Listing 4-2. C# Code with the Declaration of the .NET Interface
Type System.Collections.Generic.IList<T> That Extends the .NET
Interface Type System.Collections.Generic.ICollection<T>

public interface IList<T> :
System.Collections.Generic.ICollection<T>,
System.Collections.Generic.IEnumerable<T>

91

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

C#

public interface IList<T> :
System.Collections.Generic.ICollection<T>,
System.Collections.Generic.IEnumerable<T>

Figure 4-9. The .NET interface type System.Collections.Generic.
IList<T> extends the .NET interface type System.Collections.Generic.
ICollection<T>, and both are implemented by the .NET class type
System.Collections.Generic.List<T> generic-based collection

As the scenario I described for the Microsoft official documentation
for the .NET class type System.Collections.Generic.List<T> and the set of
.NET interface types shown, in the Microsoft official documentation for the
.NET interface type System.Collections.Generic.IList<T>, and as shown in
Figure 4-10 in the remarks section of the Microsoft official documentation,
there is some information about the relationship of the two .NET interface
types and the role of the System.Collections.Generic.ICollection<T> as
the base .NET interface type for all .NET generic-based collections for the
.NET platform implementations.

Remarks

The |List<T> generic interface is a descendant of the |Collection<T> generic

interface and is the base interface of all generic lists.

Figure 4-10. The .NET interface type System.Collections.Generic.
IList<T> is based on the System.Collections.Generic.ICollection<T>
that has the .NET interface type System.Collections. Generic.
IEnumerable<T> as the base interface type

Figure 4-11 shows an excerpt of C# code for .NET interface type
System.Collections.Generic.IList<T> from the Microsoft .NET Core Source
Browser tool at https://source.dot.net.

92

https://source.dot.net

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B e x| B wocs

@ 9|l & R B -

« O R A hitps/isowcedotnet/®System Private.Co

. System.Collections.Generic. IList

" GenencArraysoriHelper They, TValue:
*2 GenericEqualityComparer<T> a
2 larraySonHelper< Tkey, Tahues 10

*2 iarraySonHelper< Tkeys 1 { A

-8 lasyncEnumerable<Tx 12 /4 The Item property provides methods to read and edit emtries in the Lisi L
13 T this[int inde

=8 |AgyneEnumenstor<T> = H shisf indax) IR

v ICollectionDebugView=T> 1€ v ey

% IDictianaryDebughisw<K. V=] St

=0 |Enumerable <T>
=2 (Enumerator<T>
=0 IEqualityComparer<T=
o |LigtaTs
% InsertionBehavicr
S IntrospectiveSortUiilities
o IReadOnlyCollection<T>
=0 IReadOnlyDicticnary « Tiey, Tvalues
0 IReadOnlyList<Ts
*2 KeyNotFoundEsception
“3 eyVishuePair
T deyVialue Pair<Tidey, Tualues
> % ListeT=
*3 MonftandomizedStringEqualityComparer
3 NullableEqualityComparer<T>
“s ObjectEqualityComparer<T»
*s ReferenceEqualityCompares File: flist.ce Vish &-cess
et an " Project: Systewn Private Corelib capenj (System Private Corelit)

/i Meturns the index of » particular item, if it is in the list.
Aot 1 if the ites sn't in the list.
dex0f(T item);

Jf Inserts valee inte the list ot positien index,

I{ index must be non-negative snd less than or equal to the
S nuzber of eloments in the list. If index squals the mumbor
items in the list, then value is appended to the end.
nsert(int index, T item);

ff Memoves the item at position index.
woid Resevedt(int fncax);

EC)
n
EF

T
CoareL b T 18540623540 hiesd

Figure 4-11. Excerpt of C# code of .NET interface type System.
Collections.Generic.IList<T> (Microsoft Official .NET Core Source
browser)

Figure 4-12 shows an excerpt of the C# code for the .NET interface type
System.Collections.Generic.IList<T> from the Microsoft Reference Source
page at https://referencesource.microsoft.com/.

93

https://referencesource.microsoft.com/

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

) nntmefyeimenaiseeetyat: % | B o % | B3 Newwb x| 4 = a8 x
“ 0 @ 8 hupsyreferencesaurcemicrosofLeom e mscoiibys) -] a s A &2
NET

* GenericAmaySarttielper<Trey, TValue> = 17 nasespace System.Collections.Gereric { =

*u GenericComparer<T= 18 t

* GenericEqualityComparer<Ts 19 sing System; &

. : N ']

“% lAmaySortHelper < TKey. Tvalue> b using System.Collec =

% lamaySortHelper < TKey> o -

=0 iCollection<T> > Wy

= IComparer <T> 24 " collection of objects. The exact ordering

a -

IDictionary<TKey. Tvalue>
=0 lenumerable«T=

=2 [Enumerator<T>

=0 [EqualityComparer<T»

0 ILst<T>

* IntrospectiveSortUtilities

ation of the list, ranging from a sorted

*0 IRgacOnlyCollection <Tx

=0 [ReacOnlyDictionary < TKey, Tvalwe»
=0 IRpacOnhylistaT»

A NotFoundException
aluePair < Tey, Tvalug>

* LongEnumEqualityComparer<Tx

38 /f The Item property provides methods to read and edit entries in the List.
*% Miscorlib_CollectionDebug\iew«T» T this[int index] {
e Miscorlib_DictionaryDebughfiew= K, V> Bet;
& et}

i YWalueCollectionDebugView=Tke,
* Miscorlib_KeyedCollectionDebugView<¥, T»

. Myllahdar e o Tx

Figure 4-12. .NET interface type System.Collections.Generic.IList<T>
is the base interface for all generic lists and inherits from System.
Collections.Generic.ICollection<T> .NET interface type. (Microsoft
Official Reference Source)

Iteration Over Collections

As shown in Figure 4-13, when working with collections, you follow
patterns, such as the behaviors that you use to iterate through the
instances of data types stored in an instance of a collection data type, non-
generic-based or generic-based.

94

CHAPTER 4

System.Collections.|Enumerable

System.Collec neric.IList<T>

ha:
System.Collections.Generic.ICollection<T>
as the base interface.

CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

System.Collections.Generic.lEnumerable<T> has
the System.Coll
base interface.

System.Collections.Generic.ICollection as the
System.Collections.Generic.l[Enumerable<T>
as the base interface.

Figure 4-13. Example of the hierarchy of .NET interface types
implemented by the .NET class type System.Collections.Generic.

List<T> generic base

When you use the for. . .each pattern via the respective syntaxes in

any programming language or environment, you do so because various

concepts and patterns of collections are supported on these respective

technological contexts.

95

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

One of these concepts that an instance of a collection data type should
support is the capacity to be iterated or to be navigated. For example,
when using the for. . .each pattern, you implement by the collection data
type the behaviors that allow your code to navigate between instances of
elements (referenced by) stored in the instance of that collection data type.

This means that every collection data type must support the concepts
and behaviors for navigation between elements stored in the instance of
a collection data type. This iteration, or navigation, should be provided
by behaviors that are independent of the statement or programming
language.

Listing 4-3 shows that you can iterate over a sequence of instances
of data types stored in an instance of a collection data type using the
statements for each, for, and while, for example. Open the solution/
project Lesson01/Iteration over a collectionat<install folder>/
CLR/System.I0/Cho4/.

Listing 4-3. Iteration Over a Collection Data Type Available in the
System.Collections and System.Collections.Generic Namespaces

#iregion Namespaces

using System;

using System.Collections;

using System.Collections.Generic;
#endregion

namespace Lesson01 {
public class Program {

static void Main() {

{ "0"’ "1", II2I|’ "3", II4II’ "5"’
II6"’ "7", II8II’ "9" };

{0) 1)2,314)516)718)9};

String[] values

UInt32[] numbers

96

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

f#iregion List of numbers using a non-generic based
collection.

ArraylList nonGenericslList = new ArraylList();
nonGenericsList.AddRange(values);

#endregion

#iregion List of numbers using a generic based
collection.

List<UInt32> genericsList = new List<UInt32>();
genericsList.AddRange(numbers);

#endregion

foreach (String number in nonGenericslList)
Console.WriteLine("{0}\n", number);

IEnumerator enumerator = nonGenericslList.
GetEnumerator();

while (enumerator.MoveNext()) Console.Writeline(
"{0}\n", enumerator.Current.ToString());

foreach (UInt32 number in genericsList) Console.
WriteLine("{0}\n", number.ToString());

IEnumerator<UInt32> enumeratorGenerics =
genericsList.GetEnumerator();

while (enumeratorGenerics.MoveNext()) Console.
WriteLine("{0}\n", enumeratorGenerics.Current.
ToString());

UInt32 index = new UInt32();
UInt32 length = ((UInt32) nonGenericslList.Count);

for (String[] items = (String[])
nonGenericsList.ToArray(); index < length; index++
) Console.WriteLine("{o}\n", items[index
].ToString());

97

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

length = ((UInt32) genericsList.Count);
index = new UInt32();

for (UInt32[] items = genericsList.ToArray();
index < length; index++) Console.Writeline
("{o}\n", items[index].ToString());

};
}s

Figure 4-14 shows the signature for one of the constructors of the NET
class type System.Collections.ArrayList non-generic-based collection.

C#

public ArrayList (System.Collections.ICollection c);

Parameters

¢ |Collection

The [Collection whose elements are copied to the new list.

Figure 4-14. Signature of the constructor that requires an argument
value with the base .NET interface type System.Collections.ICollection
implemented

The signature of this constructor indicates that the argument value
is required to be based on an implementation of the .NET interface type
System.Collections.ICollection; this means an instance of a .NET class type
that has this .NET interface type implemented, directly or indirectly.

98

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

This kind of information about .NET data type relationships is also
used by tools, as shown in Figure 4-15, and the sample code with the
IntelliSense of Microsoft Visual Studio/Visual C# shows the signature of
the constructor with System.Collections.ICollection as the parameter
data type.

B Bk Bt Yew Pt Buld Debvg Team Ashitectun Tet Anehoe Teob Exteraions Windew Hels Search (Dl 2 Lewanl! @ - a x
-0 @t W P Debeg - AnycPu - B Bostenoveaclecion - BU@, wfi Tu M - i Washee P ADMIN
i o] -t
Felheiation orves_a_culction -1 % LesorllLiogen = | %aMainl) -iig

3 raforeaces + =
8 =publicclass Program{ £
9 =--ostaticveld-Main()-{
10 | a2
11 §|— ‘String[]-values = {"0","1","2" 3" 4" "5","6", 7", 8", "9" }
12 Uint32[) numbers = {0,1,2,3,4,5,6,7,.89)
13
14 =i Hregion List of numbers using a nongenerics-based collection,
15¢" Arraylist nonGeneriesList= new ArraylList();
15 | nonGenericsLis 425017 tealoletond il
17 e '”Ef‘.dl’L‘gi{Jll SClRT0N AR ETEEATE D0 COPIET 1D Pt el
18
19
20 = ‘Hregion List of numbers using a generics-based collection.
21 List<UInt32> genericsList = new List<Uint323();
22 ‘genericslist.AddRange{ numbers);
23 Hendregion
s i e o s cam we o
Oty i Fised Symited Fnulti
o

Figure 4-15. Sample code with the IntelliSense of Microsoft Visual
Studio/Visual C# showing the signature of the constructor with
System.Collections.ICollection as the parameter data type

Not just the constructor of a .NET type can define a parameter of
.NET interface type System.Collections.ICollection. Figure 4-16 shows the
System.Collections.ArrayList. AddRange() instance method defined with a
parameter of the .NET interface type System.Collections.ICollection.

99

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B B & Yoo P Buld Deboy Team Ashitecne Tt Auehos Teob Exfemions Mindew Help | Seach (0l 2 Lewoall] @ - 8 %
e - Rt Wl DT Debwy - AmCPU = B Bostonoveaoclecion - B, i s A 5 1 nashee AN
£
Eolheretion_over_a_colection +| %2 LesionOLProgen -1 % Maind) it}
e 5
8 =publicclass Program{ “ 1
9 =--staticvold-Main()-{
10 | |
11 || oString(] values = {"0", 1", "2","3", 4", "5", 6", "7", "g", "g"};
12 Uint32[) numbers = {0,1,2,3,4,5,6,7,.89)
13 :
14 = Hregion List of numbers using a nongenerics-based collection,
15 Arraylist nonGenericsList-= new ArrayList();
16 | nonGenericsList. AddRange(values);
17 | vosd Ay LiinAgtangu{iCabiection cf
Bkt P et o 10 86 cTion b e e of the Sty L
18 « The £ be e of the Asrlat Th T be nll but & con conteir
19
0 & Hreglon-List of numbers using a generics-based collection.
21 List<UInt32> genericsList = new _:sl‘(UIntZiZ:vl};
22 ‘genericslist.AddRange{ numbers);
23 #endregion
T o Nebie e e s we o
Outpnt ErrorList Fised Symied Fulti

Figure 4-16. Sample code with the IntelliSense of Microsoft Visual
Studio/Visual C# showing the signature of the instance method with
System.Collections.ICollection as the parameter data type

About IEnumerable<T> and IEnumerable Interfaces

Figure 4-17 shows one of the constructors for the .NET class type System.
Collections.Generic.List<T> generic-based collection and indicates the
argument value is required to be based on the implementation of the .NET
interface type System.Collections.Generic.JEnumerable<T>, or inherited
from a .NET class type that has this .NET interface type implemented,
directly or indirectly.

100

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

C#

public List (System.Collections.Generic.IEnumerable<T>
collection);

Parameters

collection |Enumerable<T>

The collection whose elements are copied to the new list.

Figure 4-17. Signature of the constructor that requires an argument
value with the base .NET interface type System.Collections.Generic.
IEnumerable<T> implemented

The signature of the constructor indicates that the argument value
is required to be based on an implementation of the .NET interface
type System.Collections.Generic.lEnumerable<T> generic base; this
means an instance of a .NET class type that has this .NET interface type
implemented, directly or indirectly.

This kind of information about .NET data type relationships is also
used by tools, as shown in Figure 4-18 by the sample code with the
IntelliSense of Microsoft Visual Studio/Visual C# showing the signature of
the constructor with System.Collections.Generic.IEnumerable<T> as the
parameter data type.

101

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B Bk B8t Vew Prowt Buld Debg Team Abicctur Tt Aoehos Reb Etemios Windew el | Search (-0 £ Lewett @ - o =
-2 Bt WP D0 Debeg - AnycRu - B Bostenoveaclecion - BU@, wfi Tu M - i Washee P ADMIN
£
FEelheretion_over_a colecticn =1 % Lol Pogen = | %aMainl) i {!
8 =--publicclass Program-{ T —;
9 ceostaticvoid Main(){ |
10 |
11 | String[] values-={"0", 1", "2", "
12 Uint32[) numbers = {0,1,2,3,4,5,6,7.8,9% =
13 :
14 = ‘#region List of numbers usinga nongenerics-based collection, I
15 ArrayList nonGenericsList = new ArrayList(); :
16 | nonGenericsList. AddRange(values);
17 #endregion
18
19 |
20 = “Hregion List of numbers using a generics-based collection.
Fitd List<UInt32> genericsList = new Z_isr<UInt32>¢;
22 ganericsList.iFA3 S ek O) o cemens copied.
23 nanis '“El'nd rl’-E‘_iDﬂ ollection (e colietin whane ity OAF (e 1o E08 Aew ISt
24 .
N - S Ne b Faurd LA el (x%S Cot™ S ChaF

Fieed Syrnised Pk

Figure 4-18. Sample code with the IntelliSense of Microsoft Visual
Studio/Visual C# showing the signature of the constructor with
System.Collections.Generic.IEnumerable as the parameter data type

Figure 4-19 shows the signature of the System.Collections.Generic.
List<T>.AddRange() instance method with a defined parameter with the
.NET interface type System.Collections.Generic.IEnumerable<T>.

102

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B B B8t Yow Pt Buld Debuy Team Asbitectuc Ten Agshos Teob Exterdions Windew Help | Scurch (Culed B Lewoall @ - A
G- @t W@ P | Debwg - AnpcR0 - b Bostenoveaccledion - FU@, &M S3 A - i Washee P ADMIN
[Frogumcs o x| - ¢
Fl heretion frver_a_collecten +| %2 LesionOLProgen -1 % Maind) it}

8 =--publicclass Program-{ T —;
9 = staticvoid Main(){

10

11 String[] values ={"0", 1", "2", 3", "4, "5", "g", "V, ngn vgn)

12 Uint32[) numbers ={0,1,2,3,4,5,6,7,8,9) =

13

14 = #region List of numbers usingano ics-based collection.

15 ArrayList nonGenericsList = new ArrayList();

16 nonGenericsList. AddRange(values);

17 | #endregion

1B |

19

20 = “Hregion List of numbers using a generics-based collection.

21 List<UInt32> genericsList = new List<Uint32>();

22 genericslist.AddRange(numbers J;

ol wintx codection)
I et

Figure 4-19. Sample code with the IntelliSense of Microsoft Visual
Studio/Visual C# showing the signature of the instance method
with System.Collections.Generic.IEnumerable<T> as the parameter
data type

Listing 4-4, Listing 4-5, Figure 4-20, and Figure 4-21 (based on the
Microsoft official documentation) show the declarations of the NET
interface type System.Collections.ICollection non-generic base and .NET
interface type System.Collections.Generic.ICollection<T> generic base.

Listing 4-4. Source Code in C# Showing the Declaration of the .NET
Interface Type System.Collections.ICollection Non-Generic Base

public interface ICollection : System.Collections.IEnumerable

Listing 4-5. Source Code in C# Showing the Declaration of the .NET
Interface Type System.Collections.Generic.ICollection<T> Generic Base

public interface ICollection<T» : System.Collections.Generic.
IEnumerable<T>

103

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

[System.Runtime.InteropServices.Comvisible(true)]
public interface ICollection : System.Collections.IEnumerable

Figure 4-20. Declaration of .NET interface type System.Collections.
ICollection non-generic base

c#

public interface ICollection<T> :
System.Collections.Generic.IEnumerable<T>

Figure 4-21. Declaration of .NET interface type System.Collections.
Generic.ICollection<T> generic base

The .NET interface type System.Collections.ICollection non-generic
base extends the .NET interface type System.Collections.IEnumerable
non-generic base, as shown in Figure 4-22.

System.Collections.|Collection
has the

System.Collections.|IEnumerable . - :
System.Collections.lIEnumerable

as the base interface.

Figure 4-22. The interface type System.Collections.ICollection .NET
non-generic base extends the interface type System.Collections.
IEnumerable .NET non-generic base

The .NET interface type System.Collections.IEnumerable non-generic
base provides the behaviors that every collection should implement to have

104

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

the characteristics required for iteration over the instances of data types
stored in an instance of a collection, using the for. . .each pattern or not.
As shown in Figure 4-23, the .NET interface type System.Collections.
Generic.ICollection<T> generic base extends the .NET interface type
System.Collections.Generic.JEnumerable<T> generic base, which extends
the .NET interface type System.Collections.IEnumerable non-generic base.
This means that all collections that are .NET generic-based data types
should implement the members of all these .NET interface type contracts.

System.Collections.Generic.lEnumerable<T>

System.Collections.|Enumerable has the System.Col ns.lEnumerable as
the base interface.

System.Collections.Generic.ICollection<T>

has the
System.Collections.Generic.|[Enumerable<T>
as the base interface.

Figure 4-23. The .NET interface type System.Collections.Generic.
ICollection<T> generic base extends the .NET interface type System.
Collections.Generic.IEnumerable<T> generic base, which extends the
.NET interface type System.Collections.IEnumerable non-generic base

Listing 4-6, Listing 4-7, Figure 4-24, and Figure 4-25 (based on the
Microsoft official documentation) show the declarations of both .NET
interface types System.Collections.IEnumerable and System.Collections.
Generic.IEnumerable<T>.

105

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

Listing 4-6. Source Code in C# Showing the Declaration for the
.NET Interface Type System.Collections.Generic.IEnumerable<T>
Generic Base

public interface IEnumerable<out T> : System.Collections.
IEnumerable

Listing 4-7. Source Code in C# Showing the Declaration for the
.NET Interface Type System.Collections.IEnumerable Non-Generic
Base

[System.Runtime.InteropServices.ComVisible(true)]
[System.Runtime.InteropServices.Guid("496BOABE-CDEE-11d3-88E8-
00902754C43A")]
public interface IEnumerable

&

public interface IEnumerable<out T> :
System.Collections.IEnumerable

Figure 4-24. Declaration for the .NET interface type System.
Collections.Generic.IEnumerable<T> generic base

C#

[System.Runtime.InteropServices.ComvVisible(true)]
[System.Runtime.InteropServices.Guid("496BOABE-CDEE-11d3-88E8-
00902754C43A")]

public interface IEnumerable

Figure 4-25. Declaration for the .NET interface type System.
Collections.IEnumerable non-generic base

106

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

The .NET interface type System.Collections.Generic.IEnumerable<T>
generic base has as its base interface type the .NET interface type System.
Collections.IJEnumerable non-generic base.

Iteration Over a Collection, the Enumerator
Pattern

The “simple” iteration over the instances of data types that are the
elements stored in an instance of a collection is provided by a pattern
called iterator or enumerator.

The enumerator is another concept and pattern used with collections;
it's exposed through these interface types such as the .NET interface type
System.Collections.IEnumerable non-generic base and .NET interface type
System.Collections.Generic.IEnumerable<T> generic base.

For the enumerator pattern, the .NET interface type System.
Collections.IEnumerator is the base type for all . NET non-generic-based
enumerators and the .NET interface type System.Collections.Generic.
IEnumerator<T> is the base type for all .NET generic-based enumerators.

Listing 4-8, Listing 4-9, Figure 4-26, and Figure 4-27 (based on the
Microsoft official documentation) show the C# code with declarations
for the .NET interface type System.Collections.IEnumerator non-generic
base and .NET interface type System.Collections.Generic.IEnumerator<T>
generic base.

Listing 4-8. C# Code with the Declaration of the .NET Interface
Type System.Collections.IEnumerator Non-Generic Base

[System.Runtime.InteropServices.ComVisible(true)] [System.
Runtime.InteropServices.Guid("496BOABF-CDEE-11d3-88E8-
00902754C43A")] public interface IEnumerator

107

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

Listing 4-9. C# Code with the Declaration of .NET Interface Type
System.Collections.Generic.JEnumerator<T> Generic Base

public interface IEnumerator<out T> : IDisposable, System.
Collections.IEnumerator

[System.Runtime.InteropServices.Comvisible(true)]
[System.Runtime.InteropServices.Guid("496BOABF-CDEE-11d3-88E8-
00902754C43A")]

public interface IEnumerator

Figure 4-26. Declaration of .NET interface type System.Collections.
IEnumerator non-generic base

C#

public interface IEnumerator<out T> : IDisposable,
System.Collections.IEnumerator

Figure 4-27. Declaration of .NET interface type System.Collections.
Generic.IEnumerator<T> generic base

The .NET interface type System.Collections.JEnumerator non-generic
base has the following members:

o Properties
¢ Current

o https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerator.
current?view=netcore-3.1#System_
Collections IEnumerator Current

108

https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netcore-3.1#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netcore-3.1#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netcore-3.1#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netcore-3.1#System_Collections_IEnumerator_Current

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerator.
current?view=netframework-4.8#System
Collections_IEnumerator Current

e Methods
¢ MoveNext()

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerator.
movenext?view=netcore-3.1#System_
Collections_IEnumerator MoveNext

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerator.
movenext?view=netframework-4.8#System
Collections IEnumerator MoveNext

¢ Reset()

o https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerator.
reset?view=netcore-3.1#System
Collections_IEnumerator Reset

e https://docs.microsoft.com/en-us/dotnet/
api/system.collections.ienumerator.
reset?view=netframework-4.8#System_
Collections_IEnumerator Reset

Figure 4-28, Figure 4-29, and Figure 4-30 show the .NET class type
implementation of the System.Collections.ArrayList instance method
that is the implementation for the .NET interface type System.Collections.
IEnumerable.GetEnumerator() instance method.

109

https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netframework-4.8#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netframework-4.8#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netframework-4.8#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current?view=netframework-4.8#System_Collections_IEnumerator_Current
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netcore-3.1#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netcore-3.1#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netcore-3.1#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netcore-3.1#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netframework-4.8#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netframework-4.8#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netframework-4.8#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext?view=netframework-4.8#System_Collections_IEnumerator_MoveNext
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netcore-3.1#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netcore-3.1#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netcore-3.1#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netcore-3.1#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netframework-4.8#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netframework-4.8#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netframework-4.8#System_Collections_IEnumerator_Reset
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset?view=netframework-4.8#System_Collections_IEnumerator_Reset

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

) rntemehcimosainatiotns: X | B amaisees ® | B Newsst x|+ - 8 %

« O @ B netps/referencesource microsaftcomem

tem/collections/a

Namespaces

¥ [} Microsoft
e /1 Returns a list wapper that is fixed at the current size. Operations g

4 I} System #f that 3dd or romoue items will fail, howsver, replacing items is allowod b
4 11 Colkections "
b 0 Conow public static Arraylist FixedSize(ar t list) { @,
B} Generic .
b0 Objecviodel >} 1= mill);
4 % pavaylst

% ArrayListDebugiew
*u ArrayListEnumerator
% ArraylistEnumeratorSimple
% FinedSizedrayList
% FivedSizelist

* % IListWrapper
% Rarge
% ReadOriyAmatist
4 ReadOniyList
" SyncAmaylist
T Syreilist

% BitAmay
*z CaselnsersitiveComparer
s CaselnsensitiveHashCodeProvider

[Returns on cnuserator for this list with the given
/[l permission for removal of elements. If modifications made to the list
41 while an eumeration is in progress, the MovaNext and

/1 Getlbject methods of the erumerator will throw an exception.

virtual IEnuserator GetEruserator() {
Contract. Ensures{Contract . Result<TEnumerator>() 1= mll);
orsimple(this);

/] Returns an enuserstor for 8 section of this list with the given
{1 peraission for removal of elenents. If modifications made to the list
i while an enumeration is in nroeress. the Mowvelext and

micollectionsandstcs

odpcn el fib.giprgj (mscorib)

* CollectionBase
* Comparer Prc
* CompatibleComparer

Figure 4-28. The .NET interface type implementation of the System.
Collections.IEnumerable.GetEnumerator() instance method in .NET
class type System.Collections.ArrayList (Microsoft official Reference
Source repository)

B 2etine

€« (S|

il < System.Collections. ArrayList

=0 |ReadCmiyList<T» 337 return new F

5 KeyhiotF " 338 3 E
otFoundException e
'= ‘Q’ﬂith!l’ ECL fF Retwrns a list weapper that is fized at the current size Operat
b raeanlice: o 121 17 that add or remove items will foil, however, replacing items is o
» % ListeT> b 1
*: NonRandomizedStringEqualiCompares 343 public static Arraylist FixedSize{Arraylist list)
*: NullableEqualityComparer<T> 344 {
*: ObjectEqualityComparer<T 345 if (list = .
*s ReferencefqualityComparer i—: ;‘sf;:‘:r;(_mﬂsofrlxs:.}:
T ValslistBuilder < T b ; i
b1l ObjectModel o

4 % Ameylist 350

[f Returns an enumerator for this list with the given
{f permission for resoval of elesents. If modifications made to the list
SF while an enameration is in progress, te MoveNext and
ff Gettbject methods of the coumerator will throw an cxception.

v ArraylistDebugVisw 151
% ArraylistEnumerstor
% ArraylistEnumerstorSimple

Pty ; 354 I
- "_’_'“"gf‘“_ rayList 355 public virtual IEnuncrator GotEnuserator])
*, FixedSizeList 186
» % IListWrapper raturn nisd ArrayListEumeratorSimple(thic);
% Range
* ReadOniyArrayList
%, ReadOnlyList I/ Beturns an enuncrator for a section of this list with the given
%, SyneamayLisg If pereission for resoval of elements. If modifications made to the list
%, Syncilist ff while an enumeration it in orcaress. the Movelext and
X Sy
% Comparer Mieh Access
* CompatibleComparer = -

Figure 4-29. The .NET interface type implementation of the System.
Collections.IEnumerable.GetEnumerator() instance method in .NET
class type System.Collections.ArrayList (Microsoft official .NET Core

Source Browser repository)

110

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B B &t Yoo Prjet Buld Debog Team Ashitectue Tt Aoehes Teob Extemions Windew Help | Search (GG £ Lowoall @ - a8 x
e - R W@ DT - Debwg - AnycRu = b Boskneveacckecion - B @, &7 TE A . 1 Whathee AN
beyme [N - £
:":I'ﬁug:-ulum‘h e _-_:ijira‘.«m(ulnliwﬂ-qlbl | @ Getfauneatod) - E

375 <ooreturnenew-FixedSizeArrayList{list); % —%
i76 } H

377

378" o h’-Fleturns-an-enumerahnr-for-lhis-list-with-the-gl'ven

379 o ff permission-for removal of elements. If modifications made to the list
380 e ff while an tionis in prog| ., the M I ‘and:

381 = ff GetObject methods of the-enumerator will throw an exception.

382 | |
383 - publicvirtual [Enumerator GetEnumerator(){

384 | Contract.Ensures(Contract.Result<|Enumerator>() I=null);

385 o return new ArrayListEnumeratorSimple(this);

386 |}

387

388 = /) Returns an-enumerator for-a-section of this list-with the given

389 /[permission-for removal-of elements. IF-medifications made-to the-list]
390 [/ while-an enumerationis in progress, the MoveNext and|

391 -~ GetObject methods-of the-enumerator-will throw-an exception.

Octinn Eror List Fiad Symived Bk

Figure 4-30. The .NET interface type implementation of the System.
Collections.IEnumerable. GetEnumerator() instance method in .NET
class type System.Collections.ArrayList. (Microsoft Source Code of
ArrayList.cs shown in the Microsoft Visual Studio/Visual C# source
code editor)

This .NET class type System.Collections.ArrayList.GetEnumerator
instance method returns an instance of a .NET class type System.
Collections.ArrayList.ArrayListEnumeratorSimple that is private and
sealed; that is, it cannot be viewed or accessed from outside the scope of
the declaring type, and no other .NET class type can inherit from it.

The .NET interface type System.Collections.IEnumerator is
implemented by the .NET class type System.Collections.ArrayList.
ArrayListEnumeratorSimple.

Figure 4-31 shows an excerpt of C# code for the implementation of the
.NET class type System.Collections.ArrayList.ArrayListEnumeratorSimple.

111

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

B B & Yoo P Buld Deboy Team Ashitecne Tt Auehos Teob Exfemions Mindew Help | Seach (0l 2 Lewon] @ - -] x
-0 Bt WP D0 Debeg - AmycRu - B Bostenoveaclecion - BU@, wfi Tu M - S nathee P ADMIN
Piogram.cs - E‘
o M ella o i N5 Lolextions Arayli i e - ¥

2158 |Serianzanie] 3
2159 @ private class Rangel_ -3

2540

2541 [Serializable]

2542 - private sealed class SRFSYUSEERUMBALOISIMPIE : IEnumerator, ICloneable {

2543 e private-ArrayList-list;

2544 private-int index;

2545 ‘private-int version;

2546 private Object-currentElement;

2547 [MenSerialized]

2548 ‘private bool isArrayList;

2549 J/{ this objectisused to indicate enumeration has not started or has terminated

2550 + -static-Object- dummyObject = new Object();n

o551 |

2552 = internal ArrayListEnumeratorSimple{ArrayList list) {

2553 this.list =list; ==

2554 ~thisindex=-1; i

2555 | version=list._version; =
W%+ O Nehwe Faurd . I oM Celt SR CRIF

Outpat Ervoe Lt Fiosd Syreied Rt

Figure 4-31. The .NET class type System.Collections.ArrayList.
ArrayListEnumeratorSimple implements the .NET interface type
System.Collections.IEnumerator

Listing 4-10 shows the use of these members of the .NET interface type
System.Collections.IEnumerator.

Listing 4-10. An Enumerator Is Required by .NET Implementations
and Certain Features for Collections

String[] Values — { IIOII’ II1II, II2II, ll3ll’ II4II’ ll5ll’ ll6ll) Il7ll,

n 8 n , n 9 n } ;

#iregion List of string values using a non-generic based collection.
ArraylList nonGenericsList = new ArraylList();

nonGenericsList.AddRange(values);
#endregion

foreach (String value in nonGenericsList) Console.Writeline
("{o}\n", value);

112

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

IEnumerator enumerator = nonGenericslList.GetEnumerator();
while (enumerator.MoveNext()) Console.WriteLine("{0}\n",
enumerator.Current.ToString());

UInt32 index = new UInt32();
UInt32 length = ((UInt32) nonGenericsList.Count);

for (String[] items = (String[]) nonGenericslList.ToArray();
index < length; index++) Console.WriteLine("{0}\n", items|
index]);

The Engineering About for...each and
Collections

Taking a look in the MSIL for the for. . .each statement, we have a try...
finally block and the .NET interface type System.IDisposable as part of
the implementation of the enumerator returned for the System.Collections.
ArrayList non-generic-based collection, and this is shown in Listing 4-11.

The MSIL generated by the compilers, whatever the programming
language, can be complex code because the compilers generate a different
sequence of intermediate code for debug, release, and a combination of
compiling and linking options.

Listing 4-11 shows the parts that are more relevant for this explanation.
The lines with source code in bold are the most relevant lines of code for
you at this point of explanation.

Here is a list with the names of the variables and an explanation about
each one of them:

o string[] V_0is the array used for a list of string values
and the non-generic-based examples. The C# code is
shown in Listing 4-1 with name values.

113

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

Listing 4-11. Excerpt of MSIL Generated by the C# Compiler and

o class [System.Runtime.Extensions]System.
Collections.ArrayList V_2 is the non-generic-based
collection. The C# code shown in Listing 4-1 is named

nonGenericsList.

o class [System.Runtime]System.Collections.
IEnumerator V_8 is created automatically by the C#
compiler to support the for. . .each statement and to
store the enumerator instance returned by the instance of
the non-generic-based collection, in this case, the .NET
class type System.Collections.ArrayList non-generic base.

o class [System.Runtime]System.IDisposable V_10 is
created automatically by the C# compiler to support
the for...each and the try...finally statements,
and to store the enumerator instance returned by the
instance of the non-generic-based collection with the
implementation of the .NET interface type System.
IDisposable, in this case, the .NET class type System.
Collections.ArrayList non-generic base.

the for...each Statement

.locals init (

114

string[] V_ o,

uint32[] V_ 1,

class [System.Runtime.Extensions]System.Collections.

Arraylist V_2,

class [System.Runtime]System.Collections.IEnumerator V 4,

class [System.Runtime]System.Collections.Generic.
IEnumerator 1<uint32> V 5,

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

class [System.Runtime]System.Collections.IEnumerator V_8,
class [System.Runtime]System.IDisposable V_10,

IL_006d: newobj instance void [System.Runtime.
Extensions]System.Collections.ArraylList::.ctor()
IL_o072: stloc.2
IL_0073: 1ldloc.2
IL_0074: 1ldloc.o
IL 0075: callvirt instance void [System.Runtime.
Extensions]System.Collections.ArraylList: :AddRange(class
[System.Runtime]System.Collections.ICollection)
IL 0080: stloc.3
IL 0081: 1ldloc.3
IL 0082: 1dloc.1
IL_oo08a: 1ldloc.2
IL_008b: callvirt instance class [System.Runtime]System.
Collections.IEnumerator [System.Runtime.Extensions]System.
Collections.ArraylList: :GetEnumeratorx()
IL_0090: stloc.s V_8
.try
{
IL_0092: br.s IL_ooaf
IL_0094: 1ldloc.s V_8
IL_0096: callvirt instance object [System.Runtime]
System.Collections.IEnumerator::get_Current()
IL 009b: castclass [System.Runtime]System.String
IL 00a0: stloc.s V9
IL 00a2: ldstr "{o}\n"
IL ooa7: ldloc.s V9

115

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

IL 00a9: call void [System.Console]System.

Console: :Writeline(string, object)

IL_ooaf: ldloc.s V_8

IL_oobi: callvirt instance bool [System.Runtime]System.
Collections.IEnumerator: :MoveNext()

IL_0o0b6: brtrue.s IL 0094

IL_oob8: leave.s IL_oodo

} // end .try
finally
{
IL_ooba: ldloc.s V_8
IL_oobc: isinst [System.Runtime]System.IDisposable

IL_ooci: stloc.s V_10
IL_00c3: 1ldloc.s V_10
IL_0o0oc5: brfalse.s IL_oocf
IL_ooc7: 1ldloc.s V_10
IL_00c9: callvirt instance void [System.Runtime]System.
IDisposable: :Dispose()
IL_oocf: endfinally
} // end handler

Listing 4-12 shows only the sequence of MSIL code that loads and
stores in a variable of .NET interface type System.Collections.IEnumerator
the reference to the instance of the enumerator returned by the instance
of .NET class type System.Collections.ArrayList non-generic-based
collections.

¢ ldloc.2 is an MSIL instruction that loads the reference
at the third (0,1,2) position in the stack for local
variables. In this case, it is the instance of the System.
Collections.ArrayList stored in the V_2 variable.

116

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

callvirt is an MSIL instruction that calls the virtual
method implementation of the System.Collections.
ArrayList. GetEnumerator.

stloc.s V_8 is an MSIL instruction that stores in the
variable V_8 (.NET interface type System.Collections.
IEnumerator) the returned instance of the enumerator.
This enumerator instance is returned by the virtual
method implementation of the System.Collections.
ArrayList. GetEnumerator.

Listing 4-12. MSIL Sequence That Loads and Stores the Instance of
the Enumerator Returned by the System.Collections.ArrayList Non-

Generic-Based Collection

IL_oo8a: 1ldloc.2

IL_0o0o8b: callvirt instance class [System.Runtime]System.
Collections.IEnumerator [System.Runtime.Extensions]System.
Collections.ArraylList: :GetEnumerator()

IL_0090: stloc.s vV 8

Inside the try...finally block, specifically in the finally block, you

have the following sequence of instructions, as shown in Listing 4-13:

Idloc.s V_8 loads the reference to the instance of the
enumerator for the instance of the .NET class type
System.Collections.ArrayList.

isinst [System.Runtime]System.IDisposable verifies if
the instance of the enumerator at V_8 has implemented
the .NET interface type System.IDisposable.

117

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

o stloc.s V_10 stores the reference to the instance for the
enumerator returned by the instance method of NET
class type System.Collections.ArrayList. GetEnumerator.

e Idloc.s V_10 loads the reference to the instance for
the enumerator returned by the instance method
of the .NET class type System.Collections.ArrayList.
GetEnumerator.

Listing 4-13. MSIL Sequence with a Call for the System.IDisposable.
Dispose Instance Method Implementation

.try

{
IL_0092: br.s IL_ooaf
IL_0094: 1ldloc.s V_8
IL_0096: callvirt instance object [System.Runtime]
System.Collections.IEnumerator::get_Current()
IL_009b: castclass [System.Runtime]System.String
IL 00a0: stloc.s V9

IL 00a2: ldstr "{o}\n"
IL_ooa7: ldloc.s V9
IL 00a9: call void [System.Console]System.

Console::WritelLine(string, object)
IL_ooaf: ldloc.s V_8
IL_oobi: callvirt instance bool [System.Runtime]System.
Collections.IEnumerator: :MoveNext()
IL_oob6: brtrue.s IL_0094
IL_oob8: leave.s IL_oodo
} // end .try
finally

{

118

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

IL_ooba: 1ldloc.s V_8
IL_oobc: isinst [System.Runtime]System.IDisposable
IL_ooci: stloc.s V_10
IL_o00c3: ldloc.s V_10
IL_ooc5: bxfalse.s IL_oocf
IL_ooc7: 1ldloc.s V_10
IL_00c9: callvirt instance void [System.Runtime]System.
IDisposable: :Dispose()
IL_oocf: endfinally
} // end handler

The reason for using the .NET interface type System.IDisposable is
that the for. . .each statement in C# is checked by the compiler to see
if the returned instance of the enumerator has implemented the .NET
interface type System.IDisposable, and if true, the finally block is created
following a sequence of rules described in the C# programming language
specification, specifically about the for. ..each statement: https://docs.
microsoft.com/en-us/dotnet/csharp/language-reference/language-
specification/statements#ithe-foreach-statement.

The following blocks of explanations are based on excerpts of the C#
specification about the for. . .each statement rules and the .NET interface
type System.IDisposable implementation.

For example, if there is an implicit conversion from the instance of
the enumerator to the .NET interface type System.IDisposable, and if the
instance of the enumerator is a non-nullable, then the finally segment of
the try...finally clause is expanded to the semantic equivalent of what
is shown in Figure 4-32.

119

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#the-foreach-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#the-foreach-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#the-foreach-statement

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY
C#

finally {
((System.IDisposable)e).Dispose();

¥

Figure 4-32. Semantic equivalent in C# code that is generated when
an implicit conversion of the instance of the enumerator for System.
IDisposable is possible

Otherwise, when an implicit conversion is not possible, in the finally
segment of the try...finally clause, the C# code is expanded to the
semantic equivalent of what is shown in Figure 4-33.

C#

finally {
if (e != null) ((System.IDisposable)e).Dispose();

}

Figure 4-33. Semantic equivalent in C# code that is generated when
an implicit conversion of the instance of the enumerator for System.
IDisposable is not possible

Otherwise, if the instance of the enumerator is a sealed .NET type,
in the finally segment of the try...finally clause, the C# code is
expanded to an empty block, as shown in Figure 4-34.

120

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY
C#

finally {
¥

Figure 4-34. Semantic equivalent in C# code that is generated when
the .NET class type of the instance of the enumerator is sealed

Otherwise, in the finally segment of the try...finally clause, the C#
code is expanded to the semantic equivalent of what is shown in Figure 4-35.

C#

finally {
System.IDisposable d = e as System.IDisposable;
if (d != null) d.Dispose();

}

Figure 4-35. Most common semantic equivalent in C# code that is
generated

Let’s stop here for this chapter and continue with the explanations
from this point in Chapter 5. In Chapter 5, I will start from the code for the
generic part of the example using C# code and MSIL code. First, I will work
in a review (or an introduction, if you have never worked with templates
using the C++ programming language).

121

CHAPTER 4 CUSTOM COLLECTIONS FOR A CUSTOM LIBRARY

Summary

The next two sections offer recommendations about the uses of
characteristics of .NET Core.

Dos

Don’t

122

Always check the Microsoft official repositories
athttp://referencesource.microsoft.comand
http://source.dot.net to learn about the model
used for the organization and behaviors of the
.NET BCL/FCL types that the custom library is
encapsulating.

Avoid complex hierarchy for object models and
implementation. Use .NET interface types and .NET
class types from BCL and FCL as the starting points for
complex object models, implementations, hierarchies,
and then learn about implementations gradually.

Ignore the knowledge available in the Microsoft
official repositories at http://referencesource.
microsoft.comand http://source.dot.net. You
should learn about the model and behaviors used for
the organization of the .NET BCL/FCL types that the
custom library is encapsulating.

http://referencesource.microsoft.com
http://source.dot.net
http://referencesource.microsoft.com
http://referencesource.microsoft.com
http://source.dot.net

CHAPTER 5

Custom Collections -
About C++ Templates
and .NET Generics

In this chapter, I will continue to talk about fundamental aspects of
implementing custom collections using the features and organization
required for any .NET platform library implementation, but with a focus on
generic technology.

When you work with collections, you follow patterns and standards,
such as the behaviors you use to iterate through the instances of data types
stored in an instance of a collection data type, non-generic or generic. Any
.NET library implementation that is using collections is implementing
patterns and following standards, which includes the required details for
the .NET platform itself.

For example, every collection in the .NET libraries has a common set of
base types that are required to be implemented and based on, such as the
.NET interface type System.Collections.ICollection non-generic base and
.NET interface type System.Collections.Generic.ICollection<T> generic base.

In this chapter, I'll use the .NET class type System.Collections.ArrayList non-
generic base to explain the required .NET interface types for non-generic-based
collections and the .NET class type System.Collections.Generic.List<T> generic
base to explain the required .NET interface types for generic-based collections.

© Roger Villela 2020 123
R. Villela, Understanding System.IO for .NET Core 3,
https://doi.org/10.1007/978-1-4842-5872-9_5

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

These explanations and concepts are valid for any collection following
the .NET standards for implementing .NET libraries, and for .NET Core,
.NET Framework implementations, and respective libraries, BCL or FCL,
or any others for .NET implementations.

Working with C++ Templates — Welcome,
Everyone

One of the big points in a software development project is cost. In fact, this
is a concern for any kind of project or action, for any area of human life, or
in nature. But code offers another interesting area: that of reuse.

When working with .NET platform implementations and .NET
libraries, we have a lot of reuse because we simply begin to write code
and don’t think in detail about things such as memory management, size
of data structures, natural/non-natural alignment because of the size
of words in the CPU register, the communication bus size between the
memory and the CPU, and things like that.

One example is when working with .NET Windows Forms, which is the
GUI framework (custom data types, custom libraries, and custom tools)
based on Microsoft Windows GDI+ / Microsoft Windows GDI Windows APIs.
Microsoft Windows GDI+ is written primarily using the C++ programming
language, but with different programming techniques, including procedural
programming, OOP, and specialized implementations.

Templates and Encapsulating Knowledge

The .NET Windows Forms encapsulates most of the technical details and
aspects of programming directly with the Microsoft Windows GDI/GDI+
APIs, and for most of the time and for most tasks we don’t have to think in
detail about the management of the Handle object of a graphical Window
object, allocation of a heap memory block to store certain informational

124

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

items about the state of the graphical objects in use, and many others
aspects that are required by a specialized graphical environment, as we have
with Microsoft GDI/GDI+ or the more advanced graphical environment
Microsoft DirectX, for example.

But encapsulate does not means hiding from us; simply put, it means
that for one or more identified repetitive tasks it creates objects (data
structures) with the behaviors (functions) that are a sequence of steps
programmed for more flexible, efficient, and practical interactions with the
callers and contexts.

For example, in Microsoft Windows GDI/GDI+ graphical environments
and APIs, there is a “window” as a graphical item that is a fundamental
concept and it has more than one data structure in the Microsoft Windows
graphical APIs and subsystem that encapsulates information about the
state of multiple graphical objects that are part of the window’s graphical
item context, such as one or more graphical icons, one or more text fonts,
different sizes for object instances, and other specialized items.

Listing 5-1 and Listing 5-2 show declarations/definitions of the
WNDCLASS window data structures of the WinUser.h header file that is
part of the Microsoft Windows SDK header files. It is also installed with
Microsoft Visual Studio 2019/Microsoft Visual C++ 2019.

The WNDCLASS window data structure has attributes with
characteristics of a window object instance and has one implementation for
ANSI and another implementation for Unicode support (wide) characters.

Listing 5-1. C++ Data Struct TagWNDCLASSA and WNDCLASSA,
*PWNDCLASSA, *NPWNDCLASSA, and *LPWNDCLASSA Type
Definitions for It

typedef struct tagWNDCLASSA {

UINT style;
WNDPROC 1pfnhindProc;

125

CHAPTER 5

int

int
HINSTANCE
HICON
HCURSOR
HBRUSH
LPCSTR
LPCSTR

CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

cbClsExtra;
cbWndExtra;
hInstance;
hIcon;
hCursor;
hbrBackground;
1pszMenuName;
1pszClassName;

} WNDCLASSA, *PWNDCLASSA, NEAR *NPWNDCLASSA, FAR *LPWNDCLASSA;

Listing 5-2. C++ Data Struct TagWNDCLASSW and WNDCLASSW,
*PWNDCLASSW, *NPWNDCLASSW, and *LPWNDCLASSW Type

Definitions for It

typedef struct tagWNDCLASSW {

UINT
WNDPROC
int

int
HINSTANCE
HICON
HCURSOR
HBRUSH
LPCWSTR
LPCWSTR

style;
1pfniWndProc;
cbClsExtra;
cbWndExtra;
hInstance;
hIcon;
hCursor;
hbrBackground;
1pszMenuName;
1pszClassName;

} WNDCLASSW, *PWNDCLASSW, NEAR *NPWNDCLASSW, FAR *LPWNDCLASSW;

The WinUser.h header file contains a source code block right after the
WNDCLASSA/ WNDCLASSAW type declarations/definitions, which is
shown in Listing 5-3.

126

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

Listing 5-3. C++ Type Definitions WNDCLASS, PWNDCLASS,
NPWNDCLASS, and LPWNDCLASS, respectively, for WNDCLASSW,
PWNDCLASSW, NPWNDCLASSW, and LPWNDCLASSW When
Using Support for the Unicode Standard, and WNDCLASSA,
PWNDCLASSA, NPWNDCLASSA, and LPWNDCLASSA When Not
Using the Support for the Unicode Standard

#ifdef UNICODE

typedef WNDCLASSW WNDCLASS ;

typedef PWNDCLASSW PWNDCLASS;
typedef NPWNDCLASSW NPWNDCLASS;
typedef LPWNDCLASSW LPWNDCLASS;

#else

typedef WNDCLASSA WNDCLASS ;

typedef PWNDCLASSA PWNDCLASS;
typedef NPWNDCLASSA NPWNDCLASS;
typedef LPWNDCLASSA LPWNDCLASS;

#endif // UNICODE

When working with Windows APIs and the C++ programming
language for your source code base in your commercial projects, you are
encouraged to use the WNDCLASS, PWNDCLASS, NPWNDCLASS, or
LPWNDCLASS data types because you are creating levels of indirection
and isolating the public APIs from the private and even more internal APIs
and data structures of Microsoft Windows operating system features and of
your own custom libraries.

This more abstract and less platform (software and hardware)
dependent way of thinking helps a lot when designing, updating,
correcting, removing, and adding APIs for your custom libraries for any
context in software development, because you have data types and data

127

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

structures that encapsulate and implement levels of reuse for more private,
internal data types and data structures that were not developed for direct
exposure via one or more public APIs.

This is why you're not doing the one-by-one mapping of data types and
data structures and development platforms as Microsoft Windows APIs
and .NET libraries as a strategic plan, but just only eventual occurrences
when transferring data between programming contexts, runtime contexts,
or between “only” functions, to cite typical scenarios.

Fundamental Data Types

In Microsoft Windows APIs, this more abstract and less platform (software
and hardware) dependent way of thinking is one of the pillars of the
design and implementation, and it is applied even for most fundamental
data types such as UINT that is a typedef for the unsigned int of C/C++
programming languages.

Listing 5-4 shows a UINT type definition for the unsigned int C/
C++ fundamental data type. The UINT type definition is part of the
minwindef.h header file that is part of the Microsoft Windows SDK header
files for Microsoft Windows APIs.

Listing 5-4. UINT Type Definition for Unsigned int C/C++ Built-In
Data Types and Others. All Part of the minwindef.h Header File

typedef unsigned int UINT;
typedef int INT;

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef float FLOAT;
typedef unsigned long DWORD;

128

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

The same principle is applied for keywords of C/C++ and assembly
programming languages. For example, Listing 5-5 shows an excerpt of the
minwindef.h header file for the definition of the CONST macro for the const
keyword of the C/C++ programming languages.

Listing 5-5. An Excerpt of the minwindef.h Header File for the
Definition of the CONST Macro for the const Keyword of the C/C++
Programming Languages

#ifndef CONST
#define CONST const
#endif

The WNDCLASSA and WNDCLASSW data structures use LPCSTR and
LPCWSTR, respectively. Both are defined in one of the most important
public header files for every type of Microsoft Windows application or
library: the WinNT.h header file. The WinNT.h header file is implicitly or
explicitly included by other header files of Microsoft Windows APIs.

LPCSTR uses the CONST macro, which is defined in the minwindef.h
header file, and the CHAR type definition that is part of the WinNT.h header
file, as shown in Listing 5-6 with an excerpt of the WinNT.h header file.

Listing 5-6. C/C++ Type Definition of CHAR for C/C++ char Built-In
Data Type
typedef char CHAR;

Listing 5-7 shows the LPCSTR definition using the CONST macro part
of the minwindef.h header file and the CHAR type definition part of the
WinNT.h header file.

129

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

Listing 5-7. Type Definition for LPCSTR That Is Part of the WinNT.h
Header File

typedef Null terminated CONST CHAR *LPCSTR, *PCSTR;

LPCWSTR also uses the CONST macro that is defined in the
minwindef.h header file and the WCHAR type definition that is part of the
WinNT.h header file, as shown in Listing 5-8 as an excerpt of the WinNT.h
header file.

Listing 5-8. C/C++ Type Definition for WCHAR Windows API Data
Type for C/C++ wchar_t Built-In Data Type in the WinNT.h Header File

#ifndef MAC

typedef wchar t WCHAR; // wc, 16-bit UNICODE character

#else

// some Macintosh compilers don't define wchar_t in a
convenient location, or define it as a char

typedef unsigned short WCHAR; // wc, 16-bit UNICODE

character
#endif

In the WinNT.h header file source code comments shown in Listing 5-8,
you can see a block of text informing that some C/C++ compilers for the
Apple platform do not put the definition for the wchar_t fundamental data
type in a “convenient” location, or treat the wchar_t definition as the built-
in data type char of the C/C++ programming languages.

Open the sample solution project <install folder>\Sources\APIs\
Windows\WE-CPP\FundamentalTypes\wchar_t Type\wchar_t Type.sln
that has the sample projectwchar_t Type.

You must understand that wchar_t is a built-in data type defined by
the C++ programming language standards and for the C++ programming
language technological product. At the time of this writing, we do not have
any wchar_t built-in data type as part of the C programming language
standards for the C programming language technological product.

130

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

When the support for ISO C++ standard wchar_t was implemented as a
built-in data type by the Microsoft C++ compiler and the C++ programming
language, it was necessary differentiate C++ source code using wchar_t as a
built-in data type and C++ source code using wchar_t as a type definition for
unsigned short, another built-in C++ data type. For guaranteed compatibility
with C++ source code created before the support for ISO C++ standard
wchar_t built-in data type, “Treat WChar _t as Built in Type” was implemented
by Microsoft C/C++ compilers, with the following options:

o /Zc:wchar_tthat has the default value defined as on

(active).

e /Zc:wchar_t- with the minus signed used together with
the wchar_t keyword when off (deactivated).

The Microsoft C/C++ compilers have the /Zc (Conformance) compiler
option with certain configurations available. You can check the full list of options
through the Microsoft official documentation at https://docs . .microsoft.com/
en-us/cpp/build/reference/zc-conformance?view=vs-2019.

When using the /Zc:wchar_t default configuration, without the minus
sign, and compiling a C++ source code, wchar_t is treated as a built-in
data type in conformance with what is defined by the ISO C++ standard,
and this is the default for the current implementation of the Microsoft C++
compiler for Microsoft Visual Studio 2019/Microsoft Visual C++, but this
configuration is ignored when compiling C source code. You can disable
the choice of conformance with the C++ standard using /Zc:wchar_t-
(using the minus sign as part of the configuration option if you are
compiling C source code).

131

https://docs.microsoft.com/en-us/cpp/build/reference/zc-conformance?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/zc-conformance?view=vs-2019

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

Internally, Microsoft maps the wchar_t ISO C++ standard for the
Microsoft-specific native and platform-specific __wchar_t. The wchar_t data
type in the Microsoft compiler represents a 16-bit (two bytes) wide character
used primarily for storing Unicode encoded in conformance with the UTF-16
Little-Endian (LE) standard specification, which is the native character type on
Microsoft Windows operating systems.

Since UTF-16LE is the native character type on Microsoft Windows
operating systems, the Microsoft UCRT and Windows API use wchar_tas a
common data type for library functions, data types, parameters, and return
values.

Figure 5-1 shows the configuration of a sample project.

[Point10rGreater Property Page

| Configuration: | Active(Debug) v | Platform: | Active(Win32) ~| | Canfiguration Manager...
4 Configuration Properties A Disable Language Extensions No
General Ceonformance mode No
Advanced Treat WChar_t As Built in Type Yes (fZc:wehar_t)

Debitg 9?"9) Force Conformance in For Loop Scope |Mo (/Ze:wehar_t-)
VC++ Directories Remove unreferenced code and data
2 (e Enforce type conversion rules
Gen.era.l N Enable Run-Time Type Information Yes (/GR)
Optimization Open MP Support
2:::2;{::::“% C++ Language Standard IS0 C++17 Standard (/std:c++17)
Language Enable C++ Modules (experimental)
Precompiled Heade
Qutput Files
Browse Information
Advanced
All Qptions
Command Line
Linker
Manifest Tool
XML Decument Genera
Browse Information | Treat WChar_t As Built in Type
Build Events v | | When specified, the type wchar_t becomes a native type that maps to _wchar_t in the same way that
< > short maps to __int16. /Zc:wchar_t is on by default.

T T T TT

oK Concel | | Apply
Figure 5-1. “Treat WChar_t as Built in Type” was implemented by
Microsoft C/C++ compilers, with the options /Zc:wchar_t that has the
default value defined as on, and /Zc:wchar_t- with the minus signed
used together with wchar_t keyword when off

132

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

The Idea of a Template in Software
Development Activities

The idea of a template in software development is to encapsulate and
reuse knowledge, standards, concepts, algorithms, and source code.

For example, if you have an algorithm that can be applied for arrays,
independently of the base type of the items in the arrays, this algorithm
can be a candidate for a template. You can implement a function algorithm
using a template technology supported by the programming technology
used in the C++ programming language, or the equivalent in .NET, which is
the generic technology.

The C++ programming language has support for a technology called
C++ Templates and the C++ Standard Library has functions and C++
data types that are based on the C++ Templates technology. The idea
and implementation of the C++ Templates technology is not only for C++
classes or structs; it is applied to functions as well.

Let’s start using an example of C++ Templates with functions of the C++
Standard Library. Open the solution Templates.slnin the <install folder>\
CLR\System.IO\Cho5\ folder. Go to the Lesson00 C++ sample project with
wmain.cpp as the principal source code file and a set of source code files with
examples of the features and concepts of the C++ Templates technology.

At the time of this writing, you can check all the C++ Standard Library
header files that have been implemented/supported/deprecated/removed
by Microsoft Visual Studio 2019/Microsoft Visual C++ at this web page of the
Microsoft official documentation: https://docs.microsoft.com/en-us/cpp/
standard-library/cpp-standard-library-header-files?view=vs-2019.

The C++ Standard Library header files are organized by contexts
(categories) such as

133

https://docs.microsoft.com/en-us/cpp/standard-library/cpp-standard-library-header-files?view=vs-2019
https://docs.microsoft.com/en-us/cpp/standard-library/cpp-standard-library-header-files?view=vs-2019

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

e Algorithms

e Atomic operations

e CLibrary wrappers

o Concepts

o Containers

o Sequence containers

e Ordered associative containers
o Unordered associative containers
o Container adaptors

o Container views

o Errors and exception handling
o General utilities

o I/0 and formatting

e Iterators

o Language support

e Localization

e Math and numerics

e Memory management

e Multithreading

¢ Ranges

e Regular expressions

o Strings and character data

. Time

134

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

In the Lesson00 C++ sample project, open the wmain.cpp, Arrays.
cpp, and Arrays.h source code files in the Microsoft Visual Studio 2019/
Microsoft Visual C++ source code editor, as shown in Figure 5-2.

b B ESt Yoo Prjodt Buld Deboy Aehtechue Tet Acshor Toch Extomiens Windew Help Seerch iCuled £ Templates @ - -] x
@0 Bt WP DT | ey | a0 © b LowlVdewsDebugger - B, W0 5 W M - 1 e P | DM
Ayt cpp Lurayeh = E‘
WLesento R p— - §
1 - #ipragma-region C++ Standard Library Header files L1 —;'
2 | -
3 |=#include <cstdint> // https://docs. microsoft.com/fen-us/cpp/standard-library/estdint Pview=vs-2019
4 || #include <cstdios-/f https://docs microsoft. com/en-us/cpp/standard-library/cstdio Pview=vs-2019
5 #include <cstdlib>// https://docs. microsoft.com/en-us/c i ib i i
5 | a2
7 | L
8 | |#pragma-endregion

9
10 =#pragma region Project Header files
11 | |#include"Arrays.h"
12 | #pragma-endregion
13
14 =#pragma-region-Namespaces
15 | -using namespace std;
16 | using namespace RVI::Arrays;
17 | |#pragma-endregion

| =
1%« O ek et Le1l Chas ot TS cRP

Octinn Eror List Fiad Symived Bk

Figure 5-2. The wmain.cpp C++ source code file of the Lesson00
sample project

Listing 5-9 shows the C++ source code with the fundamental
organization for the wmain. cpp source code file.

Listing 5-9. wmain.cpp C++ Source Code with the Fundamental
Organization for the Source Code

#pragma region C++ Standard Library Header files

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdint?view=vs-2019

#include <cstdint>

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdio?view=vs-2019

135

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

#include <cstdio>

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdlib?view=vs-2019

#include <cstdlib>

#pragma endregion

#pragma region Project Header file(s).
#include "Arrays.h"

#pragma endregion

#pragma region Namespaces

using namespace std;
using namespace RVJ::Arrays;

#pragma endregion
int32_t wmain(void) {

//int32_t _exitStatus = EXIT FAILURE;
int32_t _exitStatus = EXIT_SUCCESS;

return _exitStatus;

}s

The <cstdint>, <cstdio>, and <cstdlib> header files are part of the C
Library Wrappers category of the C++ Standard Library.

136

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

Listing 5-10 shows the Arrays.h C++ header file that is part of the
Lesson00 C++ sample project. It has declarations of the functions that are
part of the namespace RV]J::Arrays.

Listing 5-10. The Arrays.h C++ Header File Has Declarations of the
Functions That Are Part of the Namespace RV]::Arrays

#pragma once
#pragma region C++ Standard Library Header files

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdlib?view=vs-2019

#include <cstdlib>

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdio?view=vs-2019

#include <cstdio>

// https://docs.microsoft.com/en-us/cpp/standard-library/
array?view=vs-2019

#include <array>
#pragma endregion
#pragma region Namespaces

using namespace std;
#pragma endregion

extern "C++" namespace RVJ::Arrays {

137

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

template< typename Type >
std::uint32_t IndexOf(_Type element, std::uint32 t
_maxSize);

};

As shown in Listing 5-10, in the Arrays.h C++ header file you can see
at the top of the file a region with the C++ header files that are included by
the Arrays.h and that are part of the C++ Standard Library. The <cstdlib>
and <cstdio> C++ header files are part of the category C Library Wrappers
of the C++ Standard Library.

You also have the <array> C++ header file that is part of the category
Sequence Containers, which is another category of C++ Standard Library.
At the time of this writing, the Sequence Containers category has the
following C++ header files:

e <array>
o <deque>

o <forward list>
o <list>

e <vector>

The <array> and <forward list> C++ header files were introduced in
the C++ Standard Library as part of the C++11 Standard.

Listing 5-11 shows the Arrays.cpp C++ source code file content and
the implementations for the functions declared in the Arrays.h C++
header file.

Listing 5-11. Arrays.cpp C++ Source Code File and the
Implementations for the Functions Declared in the Arrays.h C++
Header File

#pragma region C++ Standard Library Header files

138

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdint?view=vs-2019

#include <cstdint>

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdio?view=vs-2019

#include <cstdio>

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdlib?view=vs-2019

#include <cstdlib>

#pragma endregion

#ipragma region Sample project header files
#include "Arrays.h"

#pragma endregion

#pragma region Namespaces

using namespace std;

#pragma endregion

namespace RVJ::Arrays {

template< typename Type >

139

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

std::uint32_t IndexOf(_Type _element, std::uint32 t maxSize)
{

uint32_t index{};
// Implementation goes here...

return _index;

}s
};

The following page of the official documentation for Microsoft Visual
C++ offers information about the idea of templates and their use in C++
programming languages: https://docs.microsoft.com/en-us/cpp/cpp/
templates-cpp?view=vs-2019.

Returning to the wmain.cpp C++ source code file, as shown in Listing 5-12,
you can see an example of the use of the std::array class template data type
that is part of the Sequence Containers category of the C++ Standard Library.
The purpose of the std::array class template data type is to enhance the
characteristics of the typical concept associated with the traditional array, a
fundamental data type supported by C++ programming language.

Listing 5-12. wmain.cpp and the Creation of an Instance of the
std::array Class Template

#pragma region C++ Standard Library Header files

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdint?view=vs-2019

#include <cstdint>

140

https://docs.microsoft.com/en-us/cpp/cpp/templates-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/templates-cpp?view=vs-2019

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdio?view=vs-2019

#include <cstdio>

// https://docs.microsoft.com/en-us/cpp/standard-library/
cstdlib?view=vs-2019

#include <cstdlib>
#pragma endregion

#pragma region Project Header files
#include "Arrays.h"
#pragma endregion

#pragma region Namespaces
using namespace std;

using namespace RVJ::Arrays;
#pragma endregion

int32_t wmain(void) {

//int32_t _exitStatus = EXIT_FAILURE;
int32_t _exitStatus = EXIT_SUCCESS;

constexpr uint32_t MaxSize{ 0x000Aui32 }; // Maximum
number of elements in the instance of the array class
template.

#ipragma region Using array class template of C++ Standard
Library

141

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

array<uint32_t, MaxSize» _numbers{ oui32, 1ui32, 2ui32,
3ui32, 4ui32, 5ui32, 6ui32, 7ui32, 8ui32, 9ui32 };

#pragma endregion

return _exitStatus;

};

The code in Listing 5-12 declares the _numbers variable as holding an
instance using the std::array class template data type as the base type and
informing two argument values for the template parameters of the std::array
class template data type: the first is the base type of the elements, and the
second is the total number of elements supported by the std::array instance.
The std::array class template data type is defined in the <array> C++ header
file that is part of the Sequence Containers category of the C++ Standard
Library.

The std::array is named a class template for two obvious reasons. First,
the data type array is declared as a class type data structure that is part of the
C++ programming language supported resources for the object-oriented
programming development techniques. Second, because the class type
data structure is augmented with the support for the generic-programming
capabilities through the C++ Templates technology.

In the array C++ source code file of the C++ Standard Library, the
class keyword is used to declare the array class data type. The C++
Templates technology features are introduced to the type using the C++
programming language keywords template, and class or typename.

The class or typename C++ programming language keywords are used for
the same purpose: introducing/declaring a placeholder type for a concrete type.

The class and typename C++ programming language keywords can
be used interchangeably. But each development environment has specific
cultural rules for coding, and individuals working in that professional field also
have preferences for distinct reasons that should be considered and respected.

142

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

The std::array class template is declared using the C++ programming
language keyword class instead of typename. The std::array class template has
members, as does any other typical class data type of the C++ programming
language, and your instance of std::array can access these members.

As a class type, it has members, but not only function members of the
class template data type can be used with an instance of the class template
data type.

There are function templates that are part of the various namespaces in
the C++ Standard Library and other libraries, such as boost (www.boost.org),
that can be applied for instances of class template data types, such as std::array
class template data type.

Listing 5-13 shows a function template that is part of the std namespace, the
std::sort() function template that can be applied to an instance of the std::array
class template data type. Additionally, Listing 5-13 shows the use of two more
member functions of the array class template data type, std::array::begin() and
std::array::end(), used to get access to the first and last items of the sequence.

Listing 5-13. Two More Member Functions of the Array Class
Template Data Types std::array::begin() and std::array::end(), Used
to Get Access to the First and Last Items of the Sequence

#pragma region C++ Standard Library Header files

#include <cstdint> // https://docs.microsoft.com/en-us/cpp/
standard-library/cstdint?view=vs-2019

#include <cstdio> // https://docs.microsoft.com/en-us/cpp/
standard-library/cstdio?view=vs-2019

#include <cstdlib> // https://docs.microsoft.com/en-us/cpp/
standard-library/cstdlib?view=vs-2019

#pragma endregion
#ipragma region Project Header files

143

http://www.boost.org

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

#include "Arrays.h"
#pragma endregion

#pragma region Namespaces
using namespace std;

using namespace RVJ::Arrays;
#pragma endregion

int32_t wmain(void) {
//int32_t _exitStatus = EXIT_FAILURE;
int32 t exitStatus = EXIT SUCCESS;
constexpr uint32_t MaxSize{ 0x000Aui32 }; // Maximum number

of elements in the instance of the array class template.

#ipragma region Using array class template data type of C++
Standard Library

array<uint32_t, MaxSize> numbers{ oui32, 1ui32, 2ui32,
3ui32, 4ui32, 5ui32, 6ui32, 7ui32, 8ui32, 9ui32 };

// Array of numbers unordered.
array<uint32_t, MaxSize» _unorderedNumbers{ 9ui32, 8ui32,
7ui32, 6ui32, 5ui32, 4ui32, 3ui32, 2ui32, 1ui32, Oui32 };

uint32_t length{ _numbers.size() };

std::sort(_unorderedNumbers.begin(), _unorderedNumbers.

end());
#pragma endregion

return _exitStatus;

b

144

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

The idea, purpose, and implementation of the std::array::begin() and
std::array::end() member functions are supported by the concept of an
iterator used by collections, containers, and similar data structures.

In the .NET collections context, the general concept of an iferator in a
C++ container or collection data types has a similar concept supported by
the concepts and implementations of a .NET “Enumerable” and a .NET
“Enumerator.”

For example, for any .NET BCL implementation there is the .NET
interface type System.Collections.IEnumerable for non-generic collections.
One of the obligations of any .NET collection, non-generic or generic-based,
is to expose an enumerator, which supports a simple iteration over an
instance of a collection.

Based on collections patterns, as iterators, there is another very
important feature in .NET for programming languages such as C#, Visual
Basic, F#, and others, which supports the for. ..each pattern to iterate
over instance items in an instance of a collection. The implementation of
concepts and data types such as System.Collections.IEnumerable, System.
Collections.IEnumerator, System.Collections.Generic.I[Enumerable<T>, and
System.Collections.Generic.IEnumerator<T> are required by the compilers
and code generation technologies that the compilers are based on.

In the Microsoft official documentation for the C# programming
language, the following web page with the title Iterators(C#) presents
some of the fundamental aspects of collections and iterators, and that these
concepts are part of the infrastructure of the .NET Libraries, such as .NET
BCL, .NET FCL, or other specialized contexts, such as .NET Windows Forms,
.NET WPE and so on: https://docs.microsoft.com/en-us/dotnet/
csharp/programming-guide/concepts/iterators.

Here is a list with links to the Microsoft official documentation website
for .NET Framework and .NET Core web pages for the .NET BCL and .NET
interface types System.Collections.IEnumerable and System.Collections.
IEnumerator, non-generics and generics:

145

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators

CHAPTER 5

146

CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

System.Collections.IEnumerable

.NET Framework link: https://docs.microsoft.
com/en-us/dotnet/api/system.collections.ien
umerable?view=netframework-4.8

.NET Core link: https://docs.microsoft.com/en-
us/dotnet/api/system.collections.ienumerabl
e?view=netcore-3.1

System.Collections.IEnumerator

.NET Framework link: https://docs.microsoft.
com/en-us/dotnet/api/system.collections.ien
umerator?view=netframework-4.8

.NET Core link: https://docs.microsoft.com/en-
us/dotnet/api/system.collections.ienumerato
r?view=netcore-3.1

System.Collections.Generic.l[Enumerable<T>

.NET Framework link: https://docs.microsoft.
com/en-us/dotnet/api/system.collections.
generic.ienumerable-1?view=netframework-4.8

.NET Core link: https://docs.microsoft.com/en-
us/dotnet/api/system.collections.generic.
ienumerable-1?view=netcore-3.1

System.Collections.Generic.JEnumerator<T>

.NET Framework link: https://docs.microsoft.
com/en-us/dotnet/api/system.collections.
generic.ienumerator-1?view=netframework-4.8

.NET Core link: https://docs.microsoft.com/en-
us/dotnet/api/system.collections.generic.
ienumerator-1?view=netcore-3.1

https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerator?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=netcore-3.1

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

Let’s return to the wmain. cpp source code file in your sample
project Lesson00 of C++ Templates and the array class template
implementation with the concept of an iterator. The implementation of the
std::array::begin() and std::array::end() member functions are supported
by the concept of an iterator in the following manner.

As you have with any collection that supports the concept of iterator,
the concrete data types that have the implementations for acting as an
iterator are not constructed to be exposed or used directly in APIs with
public exposition.

Even when the iterator data type is public by the technical definition, used
alone it is useless or has no contextual meaning without other data types with
public or not public access. So, even when you find a data type with a public
access, you should learn about the context before using the data type.

This means that is much easier to change details about the data type
implementation of the iterator or even replace the data type with the role of
iterator. For example, in .NET there is the idea of contract through the NET
interface type that is used as another level of indirection and isolation of
implementation and that only exposes the members of the .NET interface
and not the .NET type that implements the .NET interface contract.

In .NET BCL, every collection that offers support for a standard way
to iterate over an instance of itself should implement System.Collections.
IEnumerable for non-generic collections and should implement System.
Collections.Generic.IEnumerable<T> for generic collections.

The System.Collections.IEnumerable.GetEnumerator() is the only
method and returns an instance of type that implements the .NET
interface System.Collections.IEnumerator.

The System.Collections.Generic.IEnumerable<T>.GetEnumerator() is
the only method and returns an instance of type that implements the .NET
interface System.Collections.Generic.IEnumerator<T>.

The “enumerator” is the implementation that iterates over the instance
of the collection.

147

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

Figure 5-3 shows an excerpt of C# code for the implementation of the
.NET class type System.Collections.Generic.List<T>.

B s x|+ - a

L 0 @ A hetps/ireferencesource. microsait comydmscoribysystem/collections/generic/list.cs & O a + ®m F R

ﬂ o
0 dETUGNEN.CE

equalitycomparer.cs

icomparer.cs

-
-
o icollectioncs
o
o idictionary.cs

e ienumerable cs

Horcs 18 COWNERMLrosolt </ THNER>
o yeomparer.cs 11w
- 12 Purpose: Ieplesents a generic, dyramically sized list as an
E lycollection s 1 arvay.
. - 14
o ireadanlydictionany.cs -
= ircadonlylistcs TR ——— e — f
& keynatfcundexceptioncs 17 ramespace Systes.Cellections Generi
= keyvaluepair.cs 18 .
19 using Systes;
® listcs . : .
Jist. 20 using Systes,Runtine;
b @ objectmodel
& amalistcs
© bitarray.cs
T using Systes.Collections Objectiadel;

& casinsensitivecomparer.cs 25
& caseinsensitivehashcodeprovider.cs 26
e collectionbase.cs &

using Systes.Security.Permissions;

© comparercs
& compatiblecomparer.cs

en Airtinnardscs re

Figure 5-3. The .NET class type System.Collections.Generic.List<T> is
implemented using an array internally to store the elements

As shown in Figure 5-4, one of the constructors of the System.
Collections.Generic.List<T> has only one parameter and with System.
Collections.Generic.IEnumerable<T> as the parameter type. This
means that the argument value informed to the constructor must have
implemented the .NET interface type System.Collections.Generic.
IEnumerable<T>. Every type that has the System.Collections.Generic.
IEnumerable<T> implemented must have one or more partner data types
acting as the enumerator for that collection data type.

148

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

& 3 0O W & hitpsreferencesource microsoft comyé ist.cs bR - a ~ @ F R

i itens = _esptyderay; -
o keynatfeundexceptiones else £

o keyvaluepair.es xd _items = rew T[eapacity]; _
g) %

B objectmodel

£ Comstructs a List, copying the contents of the given collection. The
o amayfistes 71 Jf size and capacity of the new list will both be equal to the size of t i}
o bitarray.cs T2 i ogi €0, i

o

seinsensitivecomparer.cs

case

sensitivehashendeprovider.cs

e collectionbase.cs

o comparer.cs < ctBlock();

e compatiblecomparer.ss
- = collection a5 IcellactioncTs;

e dictionarpbase.cs

o dictionarpentry.cs “e.Count}

o emptyreadonkydictionaryintemnal.cs if
e hashtable.cs - t

. —
& icallsctions it = _saptydcrny;

o icomparer.cs 86 lse {
e idictionary.cs &1 itemt = new T[count];
e idictionaryenumenator.cs B8 L -{n::rh-{_x'--n-. el;

o ienumerable.cs

© ienumerator.cs

© iequalitycomparer.cs

o ihashcodepeovidercs

e flistcs =

Figure 5-4. One of the constructors of the System.Collections.
Generic.List<T> has a parameter with System.Collections.Generic.
IEnumerable<T> as the base type. (Microsoft Source Code of List.cs)

Figure 5-5 shows an excerpt of the source code of the constructor
that has a parameter type System.Collections.Generic.IEnumerable<T>.
The block of code is assuming that the System.Collections.Generic.
[Enumerable<T>.GetEnumerator() method implementation is returning
avalid instance for an enumerator from the instance of the data type
informed as the argument value for the constructor’s parameter.

149

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

B s x [BE - B8

e 3 0O @ A hitps/referencesource microsaft comy#mse

Ho‘ C :
o = _items = new T[count];

o keynatfeundesceptiones 88 e.CopyTal nms a);
o keyraluepair.cs P _size = count .
2%) =
b abjrctmadel “ ¥ N
92 1
& smafisies hes
o bitarray.cs 94 Titoms - emprynreay;
o cassinsensithecompann.s %5 /1 This enumerable could be empty. Let Add allocate a new array, if nd
o cassinsensitivehashendeprovidercs o A e el il
o collestionbasess - & b | = [collect
o comparercs % X
o compatiblecomparer.cs 168
o dictionarbase.cs ;:4
e dictionaryentry.cs toe

o emptyreadonydictionaryintemal cs 184

& hashtable.cs s . - _ .

e icollectiones 106 /f Gets and sets the capacity of this list. The capacity is the size of
) - 107 /f the internal arcay wied to hold itess, When set, the interna

© leompargr.cs 108 /f array of the list is reallocated to the given capacity.

o idictionary.cs 105 "

e idictionaryenumeraton.cs 118 public int Copacity {

o ienumerable.cs o Bt {
R - 112 Contract Ensures(fontract . Resultcint>() »= 0);

© ignumerator.cs

& inquatitycomparen.cs File: systemicollectionsgeneric\st s

e ihashcodeprovider.cs Project: pdpiclierobhmgcordib csprsj [mecorib)

o jlistcs t A

Figure 5-5. The implementation is using the instance of System.
Collections.Generic.IEnumerator<T> of the argument value informed
to the constructor

Figure 5-6 shows another block of the List.cs source code file, and
it has the implementation of the System.Collections.Generic.List<T>.
GetEnumerator() method because System.Collections.Generic.List<T>
has declared the .NET interface type System.Collections.Generic.
IEnumerable<T> as one of base .NET types.

The implementation of the System.Collections.Generic.List<T>.
GetEnumerator() method returns an instance of a value type, not a
reference type. This value type has the name Enumerator.

150

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

B s x [BE - B8

e 3 0 @ A hitps/referencesource microsoft comy#,

break;

o keynatfoundenception cs e |—
o keyvaluepair.es 57 sevion(items[i]); B
558 ¥ =
b objectmodel 559
50 if (version l= _version 88 Binarylospatibility.Tergetsatiesst Desktop 4

o amaistes : Cospati s i,
» rowtelpar. ThrowlnvalidOperstionException(Excentionkasource. Inva
bitarray.cs

caseinsensitivecomparer.cs

o
o
e caseinsensitivehashcodeprovider.cs 554 /f Returms on enumerator for this list with the given
o collectionbase.cs 565 Jf permission for emoval of elesents. Tf sodificstjoos made Lo the 133t
o compsrercs ss /1 while an crumeration iz in progress, the MoveNext and [
55T 4/ GetObject sethods of the enmerator will throw an exception.
o compatiblecomparer.cs 568 i
e dictionarpbasecs public Enumerator GetEnuserator() {
o dicionaryuntry.cs 570 ruturn pew Emmeston(this);
o emptyreadonkdictionaryintemal cs :;
e hashtable cs 573

e icallsctioncs srabledTs. Getbruserator() {

weerater{thit);

ieamparer.cs
idictionary.cs
idictionaryenumerator.cs 578 ystem.Collections. 1

merator System.Collections. lEnumerable.GetEnumerator() |
o ienumerable.cs or{Ehis);
ienumerator.cs

iequalitycomparen.cs

ihashcodepeovidercs

e flistcs =

Figure 5-6. The method is returning an instance of a .NET value
type, not a .NET reference type. This .NET value type has the name
Enumerator

The Enumerator is a .NET value type declared inside the List.cs
source code file and has System.Collections.Generic.JEnumerator<T> and
System.Collections.IEnumerator as the base .NET interface data types.
This is shown in Figure 5-7.

With all the required interfaces implemented, when you are using them
in your source code for an application, you don’t have the names of the
enumerator’s data types of the .NET collections’ data types, with generic
support or without generic support. Internally, the .NET collections are
much less restricted about changes or replacements of data types because
these more specialized data types, as in the scenarios with the enumerators’
data types, were not created to be exposed through public APIs.

151

CHAPTER5 CUSTOM COLLECTIONS - ABOUT C++ TEMPLATES AND .NET GENERICS

B s x [BE - B8

€ 2 0O R A& hitps/ieferencesourcemicrosaftcomy#mscoribysystem/collections’

o keynatfeundexceptiones
o keyvaluepair.cs
[Serializabla]

ic struct Enumerstor : IEnuseratordIlr,

© [gnumerator.cs
& inqualitycompares.cs
e ihashcodeprovider.cs

e flistes

Figure 5-7. The Enumerator is a .NET value type declared inside
the List.cs source code file and has System.Collections.Generic.
IEnumerator<T> and System.Collections.IEnumerator as the base
.NET interface data types

The point here is a common aspect for the .NET types: a set of NET
interface types are related based on inheritance between contracts. That
is, instead of a .NET class type declared with multiple .NET interface types
at the class level, the .NET class type is declared with few .NET interface
types, but they are composed of a succession of .NET interface types that,
in the final, create the full expected collection type with the required
behaviors and concepts available.

Let’s stop here for this chapter and continue with the explanations
from this point in Chapters 6. In Chapter 6, I will start from code for the
generic part of the example using the C# code and the MSIL code. Then I
will talk about unmanaged code, unmanaged data types, the .NET, and the
System.IO unmanaged data types.

152

CHAPTER 6

Unmanaged .NET
Data Types and
System.|O

In this chapter, you will learn about the fundamental aspects of
implementing the features and organization required for any .NET platform
library implementations, but with a focus on unmanaged code and
unmanaged data types, the .NET and the System.IO unmanaged data types.

Unmanaged .NET Data Types and System.l0

The .NET data types in System.IO and the other namespaces of System.IO

have specialized data types for interacting with System.IO.Ports, System.

10.Pipes, System.]0.MemoryMappedFiles, and others, and use the collections

and the patterns and concepts that are the base of all .NET collections.
Figure 6-1 shows the following assemblies:

o mscorlib.dll
e netstandard.dll
e System.]O0.UnmanagedMemoryStream.dll
e System.Runtime.InteropServices.dll
© Roger Villela 2020 153

R. Villela, Understanding System.IO for .NET Core 3,
https://doi.org/10.1007/978-1-4842-5872-9_6

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

The System.IO0.UnmanagedMemoryStream .NET reference type is not
CLS-compliant; remember that the CLS is part of the ECMA-335 specification
and is a set of rules intended to promote programming language
interoperability. In order to conform to the CLS, these rules must be followed.

But a non-CLS compliant .NET data type is still valid from the
perspective of the CLR and the .NET platform. The point here is that
the non-CLS compliant .NET data type was not created to guarantee
support for the multiple programming languages’ characteristics in
.NET because the support of multiple programming languages should
require, for example, restrictions on the use of certain features, or multiple
implementations of the same type for achieving requirements of different
compilers and programming languages.

UnmanagedMemoryStream Class

MNamespace: System.lO
Assemblies: System.lO.UnmanagedMemoryStream.dll, mscorlib.dll. netstandard.dll,

System.Runtime.InteropServices.dll

Important

This API is not CLS-compliant.

Figure 6-1. A non-CLS compliant .NET data type is still valid from
the perspective of the CLR and the .NET platform

When working with unmanaged .NET data types, the implementation
of the System.IDisposable .NET interface data type is one typical element
in unmanaged .NET data types.

The implementation of the System.IDisposable interface .NET
data type is a pattern adopted by .NET BCL and .NET FCL, and it is
recommended or required for custom libraries for .NET platform.

154

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

“Recommended” means that, if you are not using certain language-
specific shortcuts, like the “using” construct for the C# programming
language or the "Using" construct for the Visual Basic .NET programming
language, which expects the System.IDisposable .NET interface data type
implemented by the .NET data type included in the language construction,
you are not required to implement the interface.

“Required” means that scenarios, such as the “using” construct for
C# programming language or the “Using” construct for Visual Basic
.NET programming language, the for. . .each pattern, and the use of
unmanaged .NET data types, expect the use of System.IDisposable as a
fundamental pattern and implementation practice, and not to be ignored
by the implementers.

The System.I0.UnmanagedMemoryStream unmanaged .NET data type
has two methods named Dispose(); one is the implementation of System.
IDisposable.Dispose() and the other is that of the .NET data type itself.

The Microsoft official documentation has an observation about that
scenario of using System.IDisposable interface .NET data type, as shown in
Figure 6-2.

(@ Note

This type implements the |Disposable interface, but does not actually have any resources to
dispose. This means that disposing it by directly calling Dispose() or by using a language
construct such as using (in C#) or using (in Visual Basic) is not necessary.

Figure 6-2. The usage and implementation scenarios of System.
IDisposable is not applied in the same way for specialized types in
System.10 and interoperability between managed and unmanaged code

Figure 6-3 shows the source code of the System.
I0.UnmanagedMemoryStream unmanaged .NET data type from the
Microsoft official reference source website, and Figure 6-4 shows the
source code from Microsoft official repository for .NET Core.

155

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

& 5 O e ¢ enERCUICH MCTesofLcomyEered b W % L 2 03

B Procesior banuieess Y Dovalop Windows e o ant TN o 0 B Turgera NEV Fraewew B Whits bhaw for Va0 Hom oo Actiate Wi || Englith b

n @ System.10.UnmanagedMemoryStream

o streamwriter.cs 8 = =
By a5 public class UnmanagedemoryStrean 1 Stream
& stringreadercs % i -
o stringuriter.cs 91 " =
o etreadercs a2
& pxtwritercs 1 :. private const long UnmanagecMesStreamMaxlength = Int6d.MaxValue; Ly
© unimaragedmen 95 [Systes.Security.Securit al) /f auto-generated
& unmanaged 5 96 private Safeluffer _buffer
o umnarwgcdnmn»rys:rcamemm -‘)i‘ [S?c-:h;:r;'—:;li .
v 98 private unsafe byte® _men;
reflection a8 private long _length;
b resources 108 private long _copacity;
b rurtiee 101 private long _position;
b geeurity 102 private long _offset;
I 103 private Filelccess _access;
-) 104 internal bool _EsOpen;
¥ threading 105 #if IFEATURE NL £8 FEATURE_ASYNC_ID
—comobject.cs 106 [han: wd]
o _filters.cs 107 srivate TaskeIntszs _lastReadTask; /f The last successful task returned from fu
y i A CATURE_ASYM
o _hresul igc #endif // FLATURE_PAL 88 FEATURE_ASYNC_TO
o _locakdatastare.cs 119
e _localdatastoremgrcs 111 #f Needed for subclasses that need to map a file, etc.
o accessviolationsxception.cs e e
i ile: gysemiighunmanagedmemorysieam.cs

= adtioncs
vationarguments.cs.

P ndprdrsrakdimscoib.csproj (mscod b

Figure 6-3. The System.10.UnmanagedMemoryStream unmanaged
.NET data type is derived from System.10.Stream, which implements
the System.IDisposable interface .NET data type. This model is
followed by .NET Framework BCL and .NET Core BCL

| merars < pv e k]
- O @ b w = £ &8 0 @ -

B Procesior banuieess Y Dovalop Windows e o ant TN o 0 B Turgera NEV Fraewew B Whits bhaw for Va0 Hom oo Actiate Wi || Englith b

@ System.10.Un

& UnmanagedfunctionPainterfitribute s e . r
4 ¢/ sumnar,

< Unmanagedhlemaryfecessones public class UnmanagedienoryStrean : Stream
& UnmanagediemarySiream.cs (a
o UnmanagedMemoryStreamWirapper.cs 53 private SafeBuffer? _buffer; =
o UnmansgedType.cs 51 private unsafe byte* _mon;

. e 52 private long _length; L,
o Unsafecs 53 privats long _capacity;
e UnsafeValueTypeAttribute.cs 54 private long _nunlmn-
e UrnerifiableCodeAttibute.cs 55 private long

e U1 EUlity.cs f; ::::::: Ibo;'[5 _secass;
o ueEutiinvalidetian.cs 58 private Taskeints? _lastRoadTask; // The last successful task roturned from Ro
o UTF3ZEncoding s 59

o UTFTEncoding.cs 6@ 14 <summary>

o Utidcs 2; f1f Creates o closed stress.

1 <fsummary>
& UtfSConstants.cs &3 #1 Noeded for ¢
© UTF8Encoding.cs 6d protected
© UTF8Encoding.Sealed.cs
e Utf8Extensions.cs

e Utf8Formatter. Bocleancs
e Utf8Formatter.Date.cs

e UtfiRormatter.Date.Ges

o Uti8Formatter.Cate.Lcs

e UrigFormater.Cate.0nes
© Utf8Farmatter.Date.R.cs

1

hat need to map a file, atc.

MesoryStresat)

unsafe
R
_isopen = falso;

managediemanySir Web Access
ct: SystemuPrivake.Corelib.csproj (System Private.Co

Figure 6-4. The fundamental model followed by the NET
Framework BCL and .NET Core BCL implementations of the System.
10.UnmanagedMemoryStream unmanaged .NET data is the same

156

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

The System.I0.UnmanagedMemoryStream unmanaged .NET data
type is derived from System.IO.Stream, which implements the System.
IDisposable interface .NET data type, as shown in Figure 6-5 for NET
Framework and in Figure 6-6 for .NET Core.

For .NET Framework and .NET Core, the System.IO.Stream .NET data
type is declared and defined as an abstract .NET data type and has System.
IDisposable as part of the declaration and implementation of non-abstract
members, as shown in Figure 6-5 for .NET Framework and in Figure 6-6 for
.NET Core.

W £ [UnmenapedMemongtem | T streaucs « | Swna [+ ~ S|
= = O @) B R A IEA L COMy Berced b Ty st oSt £ * % L & 0 @ -
B% Processor banutsens B Daelop Windows de o g Comt TH o 0 B Turgera NEV Fraewew B Whits bhaw for Va0 Hom oo Actiate Wi || Englith b

@ System.10.UnmanagedMemoryStream

e Readlinesiterator.cs
e searchoption.cs
o seekorigings

pub
© streamreader.cs 46 #endif // FEATURE_REMOTING
© streamwriter,cs
o swingreadercs
o stringwriter.cs e [fde pick a value that is the largest multi
© tedtreadercs 51 ' opyTo/ CopyTolayne buffer is sho

s /{ improvement opy performance.
DefoultCopyBuf ferSize = B1920;

48 public static readonly Streas Null = new MullSteess();

o LEtwritercs

© unmaragedmemEryaccassones
© unmanagedmemornystream.cs

© UNmAnagedMEmCIySirBamwWia ppercs 56
reflection
resouTes

on streans that don't support async 10

ask _activeReadnritaTask;

rurtime 68
security 1
et

im _asynchctiveSemaphore;

) Slin Ensuredsynchct iveSemaphoreInitialized()
threading

= __comobjectes TN
o _filters.co Fill: gystemohstream es

o _hresults.cs Project: ndpidrisrobdimscorib.csproj (mscodib)
o locakdatastore.cs

Figure 6-5. For .NET Framework and .NET Core, the System.
10.Stream .NET data type can be defined with different supported
features and base types

157

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

& o[vmmspdiengen |G aene | © wens ~ [i - 8 X
£ 5 O @ A Mpsiscurcsdunet=system Prvate.ComlbStrsames b s £ & O @ -
B Procetcr banueens B Dvalop Windows e o ot TN s @ B Targera NET Fraewew B Whats bhaw foe Vs Hom oo Acthate Wi || Englih ~

@ System.10.Un

o StopwatchWindews.cs e e e e e e

D Stream.cs {h o Butf
- e B using System.Duffers; 5
Streamingonkext.cs 15 using System.Diagnostics; ’t_=
e StreamReadercs 20 using System.Runtime,ExceptionServices;
© SireamWriter.cs 21 using System.Runtime. InteropServices; [
01

e String Comparison.cs using Systes.Threading;

2
& Syingss ; using System.Threading.Tasks;
o String Manipulation.cs 35 namespace System.I0
© String Searching.cs e
o StringBuilder.cs : public abstract partipl <loss Stresa : MorshalByReflbject, IDisposable, IAsyncBispossble
e SiringBuilder. Debug.cs 2
o SringComparer.cs
& StringComparison.cs 3
= SyingFreezingaAttribute.cs .
3

public static raadonly Stresn Mull = mow HullStress();

/1 We pick a valus that is the largest multiple of 4696 that s still smaller than the lar
/1 The CopyTo/CopyTohsyne buffer is short-lived and is Likely to be collected ot Gend, and
/1 inprovemsnt in Copy performance.

e Swringinfo.cs private const int DedaulzCopyBufferSize = B1920;

- SIIIngNDrMﬂl:!liﬂﬂ[xlﬁnﬂﬂn&t! .3

o StingReades.cs 38 /f To implesent Async I0 operations om streams that don't support asyne 10

o SringRunsEmmerarsr.cs . private Semaphoreslin? _asyncict iveSenaphore;

o SringSplitOptions.cs 9

o StringTokencs 1 1 5

e StringWiiter.cs ile: Steam.cs e Arcess
© SrongEidiCategory.cs : roject: SystemPrivate.Corelibuesprof (System. Frivate Corclib)

Figure 6-6. The .NET Core System.10.Stream .NET data type is
defined with different supported features and base types, such
as the support for .NET Async as part of specialized interface
IAsyncDisposable for release of unmanaged resources

For the implementation of the System.I0.Stream.Dispose(System.
Boolean) method, a typical member of the .NET data type is created to be
implicitly inherited and visible by descendants because it is defined as
protected, and overridable because it is defined as virtual.

For the implementation of the System.IO.Stream.Dispose(void) method that
is the implementation of System.IDisposable interface .NET data type member,
it’s defined as public, meaning that any other .NET type can call it directly via an
instance of a descendant of the System.IO.Stream .NET data type.

The implementations of Dispose() methods for the .NET Framework
and .NET Core are the same. As shown in Figure 6-8 and Figure 6-9, the
implementation of the System.IDisposable.Dispose() method calls the System.
10.Stream.Close() method, and the final cleanup of unmanaged resources
is realized in the System.IO.Stream.Close() method, instead of the System.
IDisposable.Dispose() method, as expected by the pattern. This is the reason
behind the note in the Microsoft official documentation, warning that by the
actual implementation calling the Dispose() method is not required.

158

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

This is not a small question, and in the source code with the
implementation of the System.I0.Stream.Close() method, you can see
lines of comments about this scenario with the implementation of System.
IDisposable, as shown in Figure 6-7.

// Stream used to require that all cleanup logic went into Close(), t
// which was thought up before we invented IDisposable. However, we -
// need to follow the IDisposable pattern so that users can write E
// sensible subclasses without needing to inspect all their base

// classes, and without worrying about version brittleness, from a {1

// base class switching to the Dispose pattern. We're moving

// Stream to the Dispose(bool) pattern - that's where all subclasses
// should put their cleanup starting in v2.

public virtual void Close()

{
/* These are correct, but we'd have to fix PipeStream & NetworkStream very carefully.
Contract.Ensures(CanRead == false);
Contract.Ensures(CanWrite == false);
Contract.Ensures(CansSeek == false);
*/
Dispose(true);
GC.SuppressFinalize(this);
}

Figure 6-7. The soure code contains lines of comments about this
scenario with the implementation of System.IDisposable and the
importance of the Dispose pattern

The purpose of these lines of comments is that at some point in a
future work of re-engineering, the release of unmanaged resources will be
realized following the Dispose pattern, as describe by the ECMA-335 official
specification for the .NET platform and shown in Figure 6-8 and Figure 6-9.

159

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

| = L & 0 ®

L L] - ™ = B Twpeta HET Frasven. B Wit e e Vs P o o e Wi || gl ~

2 System IO ySircor

= ReadUnesheratorcs ol paseltrue);
220 L. SwereasFinalize(this);
250 1

53 peblic void Gispose()

= unmanagedmemarysiream cs
© unmenagedmemarysireammrapaer s

= reflection
s

runtime

=
Hhueading
= _cemobject.cs

v
»
* o ety
»
»

o _hoepadics
o localdatattonecs

Figure 6-8. Excerpt of .NET Framework BCL source code showing the
implementation of the System.IDisposable.Dispose() method, which
calls the System.10.Stream.Close() method, and the final cleanup of
unmanaged resources realized in System.I10.Stream.Close() instead of
System.IDisposable.Dispose(), as expected by the pattern

| = L & 0 ®

B Wty e o s B o v At Wi [Bl

@ System.I0.Un

o S1opwatch Windom i

© Streaminglontates

= SireamReadercs aEn
------ s =
b i 250 the
o String. Lomaanizoncs w1 7 wt The
= faring.ce w2 peblic virtaal void Close()
& Stiing Maniguiations 1 {
ittty s lspase(true);
Suing Scarching.cy 295 6 Suppressfinal ize(this);
e Suinguilderss " 3
& Sting Bikles Debuag cx 27
& SiringComparer.cs i pblic veid Disposel)
 Shgcrmpmieony 300 © Cleseil;
o SuinghreesagAnibutecs o +
& Stringinke.cs w2
& SingHenulzatioy ‘ = protacted virtusl vaid Dispose(beol disposing)
o SuingResder s e et R s T A A S
& StringRunenumenatorcs 106 /7 1tk Welte, since the sta ok B
e Stringsplitoptions.cs wr {1 tore down. Thls 1s the last « or & stre
& SuingTokmes 5o }
it Streames Web Access
; ate Corelib)

o SenghidiCaegan s o e

Figure 6-9. The .NET Core BCL implementation of System.
IDisposable.Dispose() method calls the System.I0.Stream.Close()
method, and the final cleanup of unmanaged resources is realized in
System.10.Stream.Close() instead of System.IDisposable.Dispose(), as
expected by the pattern

160

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

In the System.I0.UnmanagedMemoryStream .NET data type, the inherited
implementation of System.IO.Stream.Dispose(System.Boolean) is overridden,
and that implementation is made in that way to be called immediately and
to avoid the possible delay with the GC mechanisms and the typical behavior
associated with the implementation and System.IDisposable, which is
recognized by the GC mechanisms and others CLR mechanisms.

Figure 6-10 and Figure 6-11 show the implementations for the System.
10.UnmanagedMemoryStream .NET data type for .NET Framework and
.NET Core, respectively.

[system.Security.Securitysafecritical] // auto-generated
protected override void Dispose(bool disposing)
{

_isopen = false;

unsafe { mem = null; }

// Stream allocates WaitHandles for async calls. So for correctness
// call base.Dispose(disposing) for better perf, avoiding waiting
// for the finalizers to run on those types.
base.Dispose(disposing);

}

Figure 6-10. The overriden implementation of System.10.Stream in
System.10.UnmanagedMemoryStream for .NET Framework BCL

[// <summary>

/// Closes the stream. The stream's memory needs to be dealt with separately.
[// <fsummary>

/// <param name="disposing"></param>

protected override void Dispose(bool disposing)

{
_isOpen = false;
unsafe { _mem = null; }
base.Dispose(disposing);
¥

Figure 6-11. The overriden implementation of System.10.Stream in
System.10.UnmanagedMemoryStream for .NET Core BCL

161

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

System.l0.UnmanagedMemoryStream .NET
Data Type As an Example

Listing 6-1 and Listing 6-2 show a sample class that encapsulates the
functionalities of System.IO0.UnmanagedMemoryStream and a console
application as the client that uses this sample class.

The project, source files, .NET data type, or the member of the
.NET data type should be explicitly configured for the support of unsafe
operations, as shown in Figure 6-12 in the case of project configuration.

[ormanageatiemensicam = < IR

Application : 2 -
Configuration: | Active (Debug) ~ Platform: | Active (Any CPU)

Build
Build Events General
P

ndage Conditional compilation symbols:
Deb

g [Define DEBUG constant
Signing

[“] Define TRACE constant
Code Analysis

Platform target: Any CPU v
Resources

Nullable: Disable v

[] Prefer 32-bit

[Allow unsafe code

[] Optimize code

Figure 6-12. The project, source files, .NET data type, or the member
of .NET data type should be explicitly configured for the support of
unsafe operations

Listing 6-1. The Custom .NET Data Type RV].UnmanagedMemory

#iregion Namespaces
using System;
using System.IO;
using System.Text;

162

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

using System.Runtime.InteropServices;
#endregion

namespace RV] {
public unsafe class UnmanagedMemory : System.Object {

#region Private members

private String localBuffer = null;
private System.IO.UnmanagedMemoryStream _
unmanagedStream = null;

private Int32 _bufferSizeInBytes;

private IntPtr memoryBlock;

#endregion

#region Constructors
public UnmanagedMemory() : base() {
return;

}
public UnmanagedMemory(String value) : this() {

this. localBuffer = value;

return;

}

#endregion

#region Closes the unmanaged memory stream.
public void Close() {

Marshal.FreeHGlobal(this._memoryBlock);
this._unmanagedStream.Close();

return;

}

#endregion

163

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

164

#iregion Read a sequence of instances of System.Byte
from a memory block using an unmanaged stream .
public void ReadAll(out Byte[] buffer) {

_buffer = new Byte[this. bufferSizeInBytes];

this._unmanagedStream.Position = 0;
this._unmanagedStream.Read(_buffer, o,
this._bufferSizeInBytes);

return;

}

#endregion

#iregion Write a sequence of instances of System.Byte in
a memory block using an unmanaged stream .
public void WriteAll() {

if ((this. localBuffer != null) 8&
(this. localBuffer.Length > 0)) {

this. bufferSizeInBytes = UnicodeEncoding.
Unicode.GetByteCount(this. localBuffer);

this._memoryBlock = Marshal.AllocHGlobal(
this._bufferSizeInBytes);

this._unmanagedStream = new System.
10.UnmanagedMemoryStream(((Bytex)
this._memoryBlock.ToPointer()), this._
bufferSizeInBytes, this._bufferSizeInBytes,
FileAccess.ReadWirite);

this._unmanagedStream.Write(UnicodeEncoding.
Unicode.GetBytes(this._localBuffer));

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

};

return;
}
#endregion

};
s

Highlighted in Listing 6-1 are some important points that are part of
any unmanaged code, and not only for this scenario. When interacting
with unmanaged code, the .NET BCL, .NET FCL, and the CLR itself provide
a set of specialized technologies and .NET data types for this context of
development and interaction between managed and unmanaged code.

In general, you should not try to “reinvent” something for System.IO
namespaces using C/C++ programming languages and integrate it in System.
10 via P/Invoke if you don't have an objective and technical reason to do it.

As example, consider the System.Runtime.InteropServices.dll
assembly. Note that mscorlib.dll and netstandard.dll also have specialized
.NET data types for required tasks when working with unmanaged code.

The System.Runtime.InteropServices.Marshal is a .NET reference type
defined as static, and it provides methods for operations with unmanaged
memory such as allocation, copying, converting between managed and
unmanaged types, and more.

Listing 6-2. Client Console Application Using the RV].
UnmanagedMemory .NET Data Type

#region Namespaces
using System;
using System.Text;
#endregion

165

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

namespace RV] {
public class Program : System.Object {
public static void Main() {

String sampleMessage = "Unmanaged .NET data
types";
Byte[] localBuffer;

RVJ.UnmanagedMemory _unmanagedMemory = new RVJ.
UnmanagedMemory(_sampleMessage);

_unmanagedMemory.WriteAll();
_unmanagedMemory.ReadAll(out localBuffer);
_unmanagedMemory.Close();

_ = UnicodeEncoding.Unicode.GetString(localBuffer);

return;

};
}s

When working with unmanaged .NET data types, by default, your
code is in charge of allocating and deallocating the blocks of unmanaged
memory. The System.I0.UnmanagedMemoryStream unmanaged
.NET data type that you are using as an example does not have any
implemented logic for automatically allocating and deallocating the
unmanaged memory. In the sample project, you are using System.
Runtime.InteropServices.Marshal.AllocHGlobal() and System.Runtime.
InteropServices.Marshal.FreeHGlobal() to allocate and deallocate blocks
of unmanaged memory.

When writing code using the System.IO .NET data types,
which internally use unmanaged code as you can see with System.
I0.UnmanagedMemoryStream as example, you must be aware that the

166

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

native APIs used internally are different on different operating systems.
System.Runtime.InteropServices.Marshal.AllocHGlobal() and System.
Runtime.InteropServices.Marshal.FreeHGlobal() for Microsoft Windows
use the native Windows API, and functions such as LocalAlloc() and
LocalFree() and the Unix-based implementation use specialized APIs such
as CRT-based or others specific to the operating system environment.
Another important aspect when using unmanaged APIs is that not
every interaction between managed environment and the native APIs are
supported by the different implementations of .NET. The System.Runtime.
InteropServices.Marshal.ReadByte() method is supported by the current
implementations of the .NET Framework BCL and .NET Core BCL, but
in the Mono .NET Core source code for Marshal.cs, the method is not
supported, as shown in Listing 6-3.

Listing 6-3. For Unmanaged Code and .NET Data Types, Not Every
Method Is Supported by All .NET platform Implementations. The
Mono .NET Core Source Code for Marshal.cs Contains Examples

using System.Reflection;
using System.Runtime.CompilerServices;

namespace System.Runtime.InteropServices {
public partial class Marshal {

public static byte ReadByte(object ptr, int ofs) {
// Obsolete
throw new PlatformNotSupportedException();

}

public static short ReadInt16(object ptr, int ofs) {
// Obsolete
throw new PlatformNotSupportedException();

167

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

public static int ReadInt32(object ptr, int ofs) {
// Obsolete
throw new PlatformNotSupportedException();

}

public static long ReadInt64(object ptr, int ofs) {
// Obsolete
throw new PlatformNotSupportedException();

}

public static void WriteByte(object ptr, int ofs,
byte val) {

// Obsolete

throw new PlatformNotSupportedException();

};
};

Another interesting scenario when talking about cross-platform
issues and the Mono implementation of .NET is the definition of the
System.Runtime.InteropServices.Marshal.AllocHGlobal() and System.
Runtime.InteropServices.Marshal.FreeHGlobal() methods, as shown in
Figure 6-13. These and other methods have the attribute System.Runtime.
CompilerServices.MethodImplAttribute .NET data type with the enum
value of MethodImplOptions.InternalCall defining that the native function
APIs used for these specialized scenarios are part of each implementation
of the CLR and certain components, such as the virtual machine for each

target platform.

168

CHAPTER6 UNMANAGED .NET DATA TYPES AND SYSTEM.I0

8% iapoastie btedace lfperd || X | BT WemodmpiCosons brumiin: X | + - 8 x
& © @ A hitpsidocsmiaosoftcom/en-us/dotnetfapi/system untime.complerserdcesmet . % B 9% % @ oM 0 | & @ & R
Inheritance Object = ValueType = Enum = MethodimplOptions
Version
MET Core 3.1 v Attributes FlagsAttribute,
£ Search
> NativeCppClassAttribute b F|e|d5
* ReadOnlyCollectionBuilder<T:
adinlytollecliontuiaer<t> Aggressivelnlining 256 The method should be inlined if possible.
> ReferenceAssemblyAttribute
> RequiredAttributeAttribute AggressiveOptimization 512 The method containg a hot path and should be
RuleCache<T> cptimized.
> RuntimeCompatibilityAttribute ForwardRef 16 The method is declared, but its implementation
* RuntimeFeature is provided elsewhere.
* RuntimeHelpers o o
4096 The call is internal, that is, it calls a method that
RuntimeHe|pers.CleanupCode is implemented within the common language
runtime.

RuntimeHelpers.TryCode

Figure 6-13. Specialized scenarios are part of each implementation
of the CLR and certain components, such as the virtual machine for
each target platform

169

Index

A

Architecture and implementation
BCL System.IO, 26
characteristics (.NET Core),

52-55
conditional compilation
symbols, 30-32
data types, 29-30
encapsulation (see
Encapsulation data types)
high-level view, 26-27
namespaces, 25-26, 28
official documentation page,
28-30
reference type, 28
support libraries (internal), 27
technological contexts, 26-27

B

Base Class Library (BCL), 3, 80

C

C++/CLI projection
blog posts, 73
CLR class library, 73-74
CLR properties page, 75-76

© Roger Villela 2020

folder configurations, 74
future of, 73
project/advance properties
page, 75
source code, 76-77
C++ Standard Library
Arrays.h C++ header file, 137
class /typename, 142-143
fundamental organization,
135-136
generic-programming, 142
header files, 133-134
object-oriented
programming, 142
sequence containers, 138
source code editor, 135
C++ templates and .NET generics
data encapsulation, 124-128
fundamental data type, 128-132
library implementation, 123
minwindef.h header
file, 128
reuse libraries, 124
software development
(see Software development
activities)
WinNT.h header file, 130
WNDCLASS data structure, 125

171

R. Villela, Understanding System.IO for .NET Core 3,

https://doi.org/10.1007/978-1-4842-5872-9

https://doi.org/10.1007/978-1-4842-5872-9

INDEX

Collections
base data types, 79
characteristics (NET Core), 122
features, 79
for...each statement, 113-121
generic base type, 86-94
generic technology (see C++
templates and .NET
generics)
iterate (see Iteration)
non-generic data type, 80-86
patterns/standards, 79
Common Language Runtime
(CLR), 73-76

D

Data types
BCL System.IO
namespace, 58-59
characteristics (.NET Core),
77-78
encapsulation of, 57
enum implementation, 58
ILDASM tool, 58-59
internal structure, 63
MSIL implementation, 64, 65
RV].IO.FileMode, 62
streams (see Stream data types)
System.Enum
declaration, 57-58, 64
System.IO.DriveType, 58
System.IO.FileAccess enum, 61
value members, 60

172

E

Encapsulation data types
data type StreamInformation,
39-47
data stream types, 38-40
functionalities, 35
RVI].IO custom data types, 33
RV].IO.FileMode, 35-37
RV].IO.IStream Interface, 48-50
RV].IO.IStreamInformation
Interface, 50-52
RV].IO.StreamType, 38
System.10.DriveType, 34-35
Enumerator pattern
class type implementation,
109-111
code declaration, 107-108
concept/pattern, 107
for...each and collections, 113-121
generic type, 108
instance method, 110-111
MoveNext() method, 109
.NET interface type, 107-112
non-generic type, 107-109
Reset() method, 109
semantic equivalent, 120-121
try... finally block, 117
Extensible Application Markup
Language (XAML), 4

F,G,H

Framework Class Library (FCL), 3

LJ,KLM

IEnumerable<T> and IEnumerable

interfaces
code declaration, 103-107
constructors, 100-101
generic type, 104-106
instance method, 102-103
IntelliSense, 101-102
.NET interface type, 103-107
non-generic type, 104-106
parameter data type, 101-103

Iteration

collection data type, 95-96
constructor signature, 98
enum (see Enumerator pattern)
for...each pattern, 95-96
generic-based type, 94-95
IEnumerable<T> and
IEnumerable interfaces,
100-107
instance method, 99
IntelliSense code, 99
statement/programming
language, 96-98

N, O, P,Q

.NET Core and projects

acronyms, 1-2

ASP.NET Core platform, 4

BCL/FCL, 3

characteristics of, 22-24, 52-55

data types (see System.IO
unmanaged data types)

INDEX

GitHub repository, 2-3
official repository, 4
open source project, 2
repositories, 2
runtime/framework, 2
UI frameworks, 4-5

Non-generic/generic-based, 145

RV].IO library creation runtime

architecture and implementation
(see Architecture and
implementation)

class library project, 11-12

.csproj project file, 13-15

debug tab, 13

name/path configurations, 12

.NET Standard 2.1 configuration
file, 15-17

project templates, 8-10

start window, 10

target framework, 17-22

XML tags, 14

Software development activities

C++ (see C++ Standard Library)
concepts/data types, 145
constructors, 148-149
enumerator, 152
file/implementations, 138-140
function template, 143-144

173

INDEX

Software development

activities (cont.)
iteration, 145
List.cs source code file, 150
.NET class type, 148
non-generic/generic-based
type, 145
programming technology, 133
returning method, 151
System.Collections.Generic.
IEnumerator<T>, 150
System.Collections.
IEnumerable, 145
System.Collections.
IEnumerator, 146
wmain.cpp file, 140-142

Stream data types

class declaration, 66-68
IFileInformation.cs, 72-73
IStreamInformation public
interface, 68-72
IStream public interface, 68-72
projects/source code, 66
reference type, 67-68
RV].I0.IStreamInformation,
72-73

System.IO unmanaged data types

assemblies, 153

BCL source code/
implementation, 160

Dispose() methods, 158

fundamental model, 156

namespaces, 153

non-CLS compliant, 154

174

overriden implementation, 161
source code, 155
System.IDisposable
interface, 155, 159
System.IO.Stream.Dispose()
method, 158
System.I0.Unmanaged
MemoryStream
client console application,
165-166
console application, 162
Marshal.cs file, 167-168
source code, 162-165
specialized scenarios,
168-169
unsafe operations, 162

TLUVWXY,Z

Target Framework Moniker (TFM)

chronogram, 7
conditional symbols

core, 21

framework, 20

RV].IO source code, 22

standard, 21
.csproj project file, 8
netcore451/netcore45, 18
netcoreapp, 17
netstandard, 18
project file, 19
project file

format/application, 5-8

uapl0.0, 18

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: About .NET Core
	Acronyms
	.NET Core Platform
	Target Framework Moniker
	Creating the RVJ.IO Library for .NET Core Using Microsoft Visual Studio 2019
	Summary
	Dos
	Don’ts

	Chapter 2: Overview of Architecture for Implementation
	RVJ.IO Custom Library and the Architecture for Implementation
	Encapsulating Data Types

	Summary
	Dos
	Don’ts

	Chapter 3: Custom Data Types for a Custom Library
	Purpose of Custom Data Types
	Working with Custom Data Types for Stream Data Types
	Using C++/CLI Projection and .NET Core
	Summary
	Dos
	Don’ts

	Chapter 4: Custom Collections for a Custom Library
	Overview
	Fundamental Set of .NET Data Types for Collections in BCL
	Non-Generic–Based Custom Collections
	Generic-Based Custom Collections
	Iteration Over Collections
	About IEnumerable<T> and IEnumerable Interfaces

	Iteration Over a Collection, the Enumerator Pattern
	The Engineering About for…each and Collections

	Summary
	Dos
	Don’t

	Chapter 5: Custom Collections - About C++ Templates and .NET Generics
	Working with C++ Templates – Welcome, Everyone
	Templates and Encapsulating Knowledge
	Fundamental Data Types
	The Idea of a Template in Software Development Activities

	Chapter 6: Unmanaged .NET Data Types and System.IO
	Unmanaged .NET Data Types and System.IO
	System.IO.UnmanagedMemoryStream .NET Data Type As an Example

	Index

